Advertisement

Modeling a Surveillance Network Based on Unit Disk Graph Technique – Application for Monitoring the Invasion of Insects in Mekong Delta Region

  • Viet Xuan Truong
  • Hiep Xuan Huynh
  • Minh Ngoc Le
  • Alexis Drogoul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7455)

Abstract

This paper aims at introducing a novel general simulation model named Unit Disk Graph-based Surveillance Network Model (USNM) for an ecosystem. This model can be applied for multiple types of surveillance network, supported by two main techniques: (1)Unit Disk Graph and (2)clustering based on the correlation measures. USNM is a part of a bigger multi-agent system, where the observed objects can be implemented as a system dynamics. Three main agents of USNM are vertices, edges and graph/sub-graphs. Furthermore, we also introduce the Brown plant hopper Surveillance Network Model (BSNM), a concrete case of USNM. The simulation for BSNM is applied for three provinces of the Mekong Delta region, Vietnam.

Keywords

Surveillance network clustering correlation Pearson correlation estimation Agent-Based Model (ABM) sampling Brown Plant Hopper (BPH) Unit Disk Graph (UDG) spatial data mining graph data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brent, N.C., Charles, J.C., David, S.J.: Unit Disk Graph. Discrete Mathematics, vol. 86, pp. 165–177. Elsevier Science Publishers B.V., North-Holland (1990)Google Scholar
  2. 2.
    Wu, W., et al.: Minimum connected dominating sets and maximal independent sets in unit disk graphs. Theoretical Computer Science, vol. 352, pp. 1–7. Elsevier B.V. (2006)Google Scholar
  3. 3.
    Marathe, M.V., Breu, H., Hunt, H.B.: Simple Heuristics for Unit Disk Graphs. Networks 25(2), 59–68 (1995), doi:10.1002/net.3230250205MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Nguyen, N.D., Phan, H.-D.T., Nguyen, N.A., Drogoul, A., Zucker, J.-D.: Disk Graph as a Powerful Intermediate Representation for Bridging the Gap between IBM and EBM of Population Dynamics. In: IEEE-RIVF International Conference on Computing and Communication Technologies Research, Innovation and Vision for the Future (2009)Google Scholar
  5. 5.
    Truong, V.X., Huynh, H.X., Le, M.N., Drogoul, A.: Estimating the Density of Brown Plant Hoppers from a Light-Traps Network Based on Unit Disk Graph. In: Zhong, N., Callaghan, V., Ghorbani, A.A., Hu, B. (eds.) AMT 2011. LNCS, vol. 6890, pp. 276–287. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Truong, X.V., Huynh, X.H., Le, N.M., Drogoul, A.: Modeling the Brown Plant Hoppers Surveillance Network using Agent-Based Model – Application for the Mekong Delta Region. In: The Proceedings of the Second International Symposium on Information and Communication Technology (SoICT 2011), Hanoi, Vietnam, October 13-14, ACM, New York (2011) ISBN: 978-1-4503-0880-9, doi:10.1145/2069216.2069243Google Scholar
  7. 7.
  8. 8.
    Myers, J.L., Well, A.D.: Research Design and Statistical Analysis, 2nd edn. Lawrence Erlbaum (2003) ISBN: 0-8058-4037-0Google Scholar
  9. 9.
    Kozak, M., Wieczorlowski, R.: ΠPS sampling versus stratified sampling - Comparison of effeciency in agricultural surveys. Statistics in Transaction 7(1), 5–12 (2005)Google Scholar
  10. 10.
    Köhl, M., Magnussen, S., Marchett, M.: Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Springer, Berlin (2006) ISBN: 3-540-32571-9CrossRefGoogle Scholar
  11. 11.
    Talvitie, M., Leino, O., Holopainen, M.: Inventory of Sparse Forest Populations Using Adaptive Cluster Sampling. The Finnish Society of Forest Science 40(1) (2006) ISSN: 0037-5330Google Scholar
  12. 12.
    Perrier, E., Bird, N., Rieutord, T.: Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes. Biogeosciences Discuss 7, 2997–3018 (2010), http://www.biogeosciences-discuss.net/7/2997/2010/ CrossRefGoogle Scholar
  13. 13.
    Laurie, H., Perrier, E.: A multifractal model for spatial variation in species richness. Ecological Complexity 7(1), 32–35 (2010)CrossRefGoogle Scholar
  14. 14.
    Treuil, J.-P., Drogoul, A., Zucker, J.-D.: Modélisation et Simulation à base d’Agents. Dunod Editions (2008)Google Scholar
  15. 15.
    Phan, H.C., Huynh, X.H., Drogoul, A.: An agent-based aproach to the simulation of Brown Plant Hopper (BPH) invasion in the Mekong Delta. In: International Conference on Computing and Communication Technologies (IEEE-RIVF 2010), Hanoi, Vietnam (2010), doi:10.1109/RIVF.2010.5633134Google Scholar
  16. 16.
    Le, N.M., Nguyen, T.: A Robotics Modeling, Design and Simulation Toolbox in Ptolemy II. In: Chinese Control and Decision Conference, pp. 2297–2301 (2010), 978-1-4244-5182-1/10Google Scholar
  17. 17.
    Taillandier, P., Vo, D.-A., Amouroux, E., Drogoul, A.: GAMA: A Simulation Platform That Integrates Geographical Information Data, Agent-Based Modeling and Multi-scale Control. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS, vol. 7057, pp. 242–258. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Amouroux, E., Gaudou, B., Desvaux, S., Drogoul, A.: O.D.D.: a Promising but Incomplete Formalism For Individual-Based Model Specification. In: International Conference on Computing and Telecommunication Technologies, IEEE-RIVF 2010, Hanoi, Vietnam (2010)Google Scholar
  19. 19.
    Otuka, A.: A migration analysis of the rice planthopper Nilaparvata lugens from the Philippines to East Asia with three-dimensional computer simulations. The Society of Population Ecology and Springer, Tokyo (2005)Google Scholar
  20. 20.
    Huynh, X.H., Guillet, F., Blanchard, J., Kuntz, P., Briand, H., Gras, R.: A Graph-based Clustering Approach to Evaluate Interestingness Measures: A Tool and a Comparative Study. Quality Measures in Data Mining, 25–50 (2007)Google Scholar
  21. 21.
    Ngo, N.H.: Principles and Applications in Mathematical model for Biological Studies, Agriculture and Environment, pp. 146–161. Agriculture Publishing House (2008) (in Vietnamese)Google Scholar
  22. 22.
    Cheng, H., Zhou, Y., Yu, J.X.: Clustering Large Attributed Graphs: A Balance between Structural and Attribute Similarities. ACM Transactions on Knowledge Discovery from Data 5(2), Article 12 (2011)Google Scholar
  23. 23.
    Ienco, D., Pensa, R.G., Meo, R.: From Context to Distance: Learning Dissimilarity for Categorical Data Clustering. ACM Transactions on Knowledge Discovery from Data 6(1), Article 1 (2012)Google Scholar
  24. 24.
    Barseghian, D., et al.: Workflows and extensions to the Kepler scientific workflow system to support environmental sensor data access and analysis. Ecological Informatics 5(1), 42–50 (2010) ISSN: 15749541, doi:10.1016/j.ecoinf.2009.08.008CrossRefGoogle Scholar
  25. 25.
    Nguyen, N.G.V., Vo, T.T., Huynh, X.H., Drogoul, A.: On weather affecting to Brown plant hopper invasion using an Agent-based model. In: Proceedings of the International Conference on Management of Emergent Digital EcoSystems (MEDES 2011), San Francisco, California, November 21-23, pp. 150–157. ACM, New York (2011) ISBN: 978-1-4503-1047-5, doi:10.1145/2077489.2077517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Viet Xuan Truong
    • 1
  • Hiep Xuan Huynh
    • 2
  • Minh Ngoc Le
    • 1
  • Alexis Drogoul
    • 3
  1. 1.Faculty of Computer Science & EngineeringHCMUTHo Chi Minh CityVietnam
  2. 2.DREAM Team/UMI 209 UMMISCO-IRDCan Tho UniversityVietnam
  3. 3.UMI 209 UMMISCO-IRD/UPMCBondyFrance

Personalised recommendations