Advertisement

Multi-robot Topological Exploration Using Olfactory Cues

  • Ali Marjovi
  • Lino Marques
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 83)

Abstract

This paper presents a distributed multi-robot system to search for odor sources inside unknown environments. The robots cooperatively explore the whole environment and generate its topological map. The exploration method is a decentralized frontier based algorithm that is enhanced by considering odor concentration at each frontier inside its cost/gain function. The robots independently generate local topological maps and by transferring them to each other, they are able to integrate these maps and generate a whole global map. The proposed method was tested and validated in real reduced scale scenarios.

Keywords

Mobile Robot Task Allocation Odor Source Odor Concentration Multiple Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marques, L., Almeida, N., de Almeida, A.: Olfactory sensory system for odour-plume tracking and localization. In: IEEE Int. Conf. on Sensors, Toronto, Canada (2003)Google Scholar
  2. 2.
    Marjovi, A., Nunes, J., Marques, L., de Almeida, A.T.: Multi-robot exploration and fire searching. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis, USA (2009)Google Scholar
  3. 3.
    Marques, L., Nunes, U., de Almeida, A.: Particle swarm-based olfactory guided search. Autonomous Robots 20(3), 277–287 (2006)CrossRefGoogle Scholar
  4. 4.
    Marjovi, A., Nunes, J., Sousa, P., Faria, R., Marques, L.: An olfactory-based robot swarm navigation method. In: Proc. IEEE Int. Conf. on Robotics and Automation, USA (2010)Google Scholar
  5. 5.
    Marjovi, A., Nunes, J.G., Marques, L., de Almeida, A.: Multi-Robot Fire Searching in Unknown Environment. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics. STAR, vol. 62, pp. 341–351. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed multirobot exploration and mapping. IEEE Special Issue on Multi-Robot Systems 94(7), 1325–1339 (2006)Google Scholar
  7. 7.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE Trans. on Robotics 21(3), 376–386 (2005)CrossRefGoogle Scholar
  8. 8.
    Singh, K., Fujimura, K.: Map making by cooperating mobile robots. In: Proc. IEEE Int. Conf. on Robotics and Automation (1993)Google Scholar
  9. 9.
    Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proc. of 2nd Int. Conf. on Autonomous Agents (1998)Google Scholar
  10. 10.
    Zlot, R., Stentz, A., Bernardine Dias, M., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proc. IEEE Int. Conf. on Robotics and Automation, USA (2002)Google Scholar
  11. 11.
    Huang, W., Beevers, K.: Topological map merging. The International Journal of Robotics Research 24(8), 601 (2005)CrossRefGoogle Scholar
  12. 12.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Krissinel, E., Henrick, K.: Common subgraph isomorphism detection by backtracking search. Software: Practice and Experience 34(6), 591–607 (2004)CrossRefGoogle Scholar
  14. 14.
    Dudek, G., Jenkin, M., Milos, E., Wilkes, D.: Topological exploration with multiple robots. In: Proc. 7th Int. Symp. on Robotics with Applications, Anchorage, Alaska (1998)Google Scholar
  15. 15.
    Dedeoglu, G., Sukhatme, G.: Landmark-based matching algorithm for cooperative mapping by autonomous robots. In: Proc. the 2000 Int. Symp. on Distributed Autonomous Robotic Systems, Knoxville, TN, pp. 251–260 (2000)Google Scholar
  16. 16.
    Kowadlo, G., Rawlinson, D., Russell, R., Jarvis, R.: Bi-modal search using complementary sensing (olfaction/vision) for odour source localisation. In: Proc. IEEE Int. Conf. on Robotics and Automation, Orlando (2006)Google Scholar
  17. 17.
    Loutfi, A., Coradeschi, S., Lilienthal, A., Gonzalez, J.: Gas distribution mapping of multiple odour sources using a mobile robot. Robotica 27(02), 311–319 (2008)CrossRefGoogle Scholar
  18. 18.
    Marques, L., Nunes, U., Almeida, A.: Olfaction-based mobile robot navigation. Thin Solid Films 418(1), 51–58 (2002)CrossRefGoogle Scholar
  19. 19.
    Ferri, G., Caselli, E., Mattoli, V., Mondini, A., Mazzolai, B., Dario, P.: SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow. Robotics and Autonomous Systems 57(4), 393–402 (2009)CrossRefGoogle Scholar
  20. 20.
    Hayes, A., Martinoli, A., Goodman, R.: Distributed odor source localization. IEEE Sensors Journal 2(3), 260–271 (2002)CrossRefGoogle Scholar
  21. 21.
    Gerkey, B., Vaughan, R., Howard, A.: The Player/Stage project: Tools for multi-robot and distributed sensor systems. In: Proc. IEEE Int. Conf. on Advanced Robotics, Coimbra, Portugal, pp. 317–323 (2003)Google Scholar
  22. 22.
    Marques, L., de Almeida, A.: ThermalSkin: a distributed sensor for anemotaxis robot navigation. In: Proc. 5th IEEE Int. Conf. on Sensors, South Korea, pp. 1515–1518 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Universidade de CoimbraCoimbraPortugal

Personalised recommendations