Distributed Autonomous Robotic Systems pp 255-266

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 83) | Cite as

Coordinating a Group of Autonomous Robotic Floats in Shallow Seas

  • Eemeli Aro
  • Zhongliang Hu
  • Mika Vainio
  • Aarne Halme

Abstract

Shallow seas are extremely difficult environments for autonomous underwater profiling floats. These robots possess no thrusters and only one actuator for their buoyancy control, and are thus entirely dependent on sea currents for lateral motion. As a further restriction, underwater acoustic communication is very limited. Taking into account these challenges, a novel co-operative underwater multi-robot system has been designed and implemented for use in shallow waters. A coordination strategy and a localization method have been developed and tested using a detailed simulation of the Baltic Sea. These methods allow the system to operate safely and to map underwater currents and other environmental variables with relatively high accuracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argo Steering Team, On the design and Implementation of Argo - an initial plan for the global array of profiling floats. International CLIVAR Project Office Report, vol. 21 (1998)Google Scholar
  2. 2.
    Arnold, J., Bean, N., Kraetzl, M., Roughan, M.: Node localisation in wireless ad hoc networks. In: Proc. ICON 2007, pp. 1–6 (2007), doi:10.1109/ICON.2007.4444052Google Scholar
  3. 3.
    Aro, E., Vainio, M., Hu, Z., Halme, A.: Diving in density: Controlling the depth of a profiling float in coastal waters. In: Proc. IASTED-CA 2010 (2010)Google Scholar
  4. 4.
    Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proc. IPSN 2004, pp. 46–54. ACM (2004), doi:10.1145/984622.984630Google Scholar
  5. 5.
    Chandrasekhar, V., Seah, W.K., Choo, Y.S., Ee, H.V.: Localization in underwater sensor networks: survey and challenges. In: Proc. WUWNet 2006, pp. 33–40. ACM (2006), doi:10.1145/1161039.1161047Google Scholar
  6. 6.
    Davis, R.E., Sherman, J.T., Dufour, J.: Profiling alaces and other advances in autonomous subsurface floats. Journal of Atmospheric and Oceanic Technology 18(6), 982–993 (2001)CrossRefGoogle Scholar
  7. 7.
    Erol, M., Vieira, L.F.M., Gerla, M.: Localization with dive’n’rise (dnr) beacons for underwater acoustic sensor networks. In: Proc. WuWNet 2007, pp. 97–100. ACM (2007), doi:10.1145/1287812.1287833Google Scholar
  8. 8.
    Fofonoff, N.P., Millard, R.C.: Algorithms for computation of fundamental properties of seawater. UNESCO Technical papers in marine science, vol. 44 (1983)Google Scholar
  9. 9.
    Garcia, J.: Positioning of sensors in underwater acoustic networks. In: Proc. OCEANS 2005, vol. 3, pp. 2088–2092 (2005), doi:10.1109/OCEANS.2005.1640068Google Scholar
  10. 10.
    Hela, I.: The sound channel of the baltic sea. Geophysica 5(4), 153 (1958)Google Scholar
  11. 11.
    Howard, A., Mataric, M., Sukhatme, G.: Relaxation on a mesh: a formalism for generalized localization. In: Proc. IROS 2001, vol. 2, pp. 1055–1060 (2001), doi:10.1109/IROS.2001.976308Google Scholar
  12. 12.
    Hu, Z., Aro, E., Stipa, T., Vainio, M., Halme, A.: Localization in an autonomous underwater multi-robot system design for coastal area monitoring. In: Proc. ICINCO 2010. INSTICC Press (2010)Google Scholar
  13. 13.
    McFarland, D., Honary, E.: Flock distortion: A new approach in mapping environmental variables in deep water. Robotica 21(4), 365–383 (2003), doi:10.1017/S0263574703004958CrossRefGoogle Scholar
  14. 14.
    Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with noisy range measurements. In: Proc. SenSys 2004, pp. 50–61. ACM (2004), doi:10.1145/1031495.1031502Google Scholar
  15. 15.
    Moses, R.L., Krishnamurthy, D., Patterson, R.: A self-localization method for wireless sensor networks. EURASIP Journal on Applied Signal Processing 4, 348–358 (2003), doi:10.1155/S1110865703212063Google Scholar
  16. 16.
    Priyantha, N.B., Balakrishnan, H., Demaine, E., Teller, S.: Anchor-free distributed localization in sensor networks. Tech. Rep. 892, MIT Laboratory for Computer Science (2003)Google Scholar
  17. 17.
    Sanford, T., Dunlap, J., Carlson, J., Webb, D., Girton, J.: Autonomous velocity and density profiler: Em-apex. In: Proc. CMTC 2008, pp. 152–156 (2005), doi:10.1109/CCM.2005.1506361Google Scholar
  18. 18.
    Stipa, T., et al.: Short-term effects of nutrient reductions in the North Sea and the Baltic Sea as seen by an ensemble of numerical models, MERI, Report series of the Finnish Institute of Marine Research, vol. 49 (2003)Google Scholar
  19. 19.
    Vadov, R.: The discovery of the underwater sound channel, experimental studies, and regional differences. Acoustical Physics 53, 268–281 (2007), doi:10.1134/S1063771007030049CrossRefGoogle Scholar
  20. 20.
    Vainio, M., et al.: Autonomous underwater multiprobe system for coastal area/shallow water monitoring (swarm). In: Proc. Eurocean 2004, pp. 407–408 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eemeli Aro
    • 1
  • Zhongliang Hu
    • 1
  • Mika Vainio
    • 1
  • Aarne Halme
    • 1
  1. 1.Finnish Centre of Excellence in Generic Intelligent Machines ResearchAalto UniversityAaltoFinland

Personalised recommendations