Reactive Coordination and Adaptive Lattice Formation in Mobile Robotic Surveillance Swarms

  • Robert J. Mullen
  • Dorothy Monekosso
  • Sarah Barman
  • Paolo Remagnino
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 83)

Abstract

We present here a set of decentralised control laws to facilitate lattice formation and reactive coordination and control of a swarm of mobile ground based robots. The control laws rely on local, indirect communication, which we implement in the form of virtual forces governed by physics based laws, computed from range and bearing measurements relative to the individual robots. Furthermore, we introduce the Virtual Robot Node (VRN) architecture to extend the capabilities of the cooperative formation control in terms of lattice cohesion and reactive dynamic abilities. The characteristics of the control laws are analysed through a number of 3D physics-based simulation experiments. We show that the basic proposed methods exhibit robustness to simulated sensor noise. We further show a number of improvements made by employing the VRN architecture, in terms of reducing errors in specified formation constraints, and additional dynamic capabilities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aicardi, M., Casalino, G., Bicchi, A., Balestrino, A.: Closed loop steering of unicycle-like vehicles via Lyapunov techniques. IEEE Robotics and Automation Magazine 2(1), 27–35 (1995)CrossRefGoogle Scholar
  2. 2.
    Antonelli, G., Arrichiello, F., Chiaverini, S.: The entrapment/escorting mission - an experimental study using a multirobot system. IEEE Robotics and Automation Magazine, 22–29 (2008)Google Scholar
  3. 3.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behaviour depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. USA (PNAS) 105(4), 1232–1237 (2008)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)MATHGoogle Scholar
  5. 5.
    Derenick, J., Spletzer, J., Hsieh, A.: An optimal approach to collaborative target tracking with performance guarantees. J. Intell. Robot. Syst. 56, 47–67 (2009)MATHCrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperating learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Sahin, E.: Swarm robotics - special edition editorial. Autonomous Robots 17(2-3), 111–113 (2004)CrossRefGoogle Scholar
  8. 8.
    Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone land: An experimental setup for the study of ant-like robots. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp. 37–44 (2007)Google Scholar
  9. 9.
    Grasse, P.P.: La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai dinterpretation du comportement des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)CrossRefGoogle Scholar
  10. 10.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research 5(1), 90–98 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kumar, M., Milutinovic, D., Garg, D.P.: Role of stochasticity in self-organisation of robotic swarms. In: Proceedings of the 2008 American Control Conference (2008)Google Scholar
  12. 12.
    Labonte, G.: Canadian Arctic Sovereignty: Local Intervention by Flocking UAVs. In: Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defence Applications (CISDA 2009) (2009)Google Scholar
  13. 13.
    Manh, H., Sheng, W.: Adaptive flocking control for dynamic target tracking in mobile sensor networks. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 4843–4848 (2009)Google Scholar
  14. 14.
    Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems (2004)Google Scholar
  15. 15.
    Mondada, F., Bobani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65 (2009)Google Scholar
  16. 16.
    Morgan, D.S., Schwartz, I.B.: Dynamic coordinated control laws in multiple agent models. Physics Letters A 340, 121–131 (2005)MATHCrossRefGoogle Scholar
  17. 17.
    Navarro, I., Pugh, J., Martinoli, A., Matia, F.: A distributed scalable approach to formation control in multi-robot systems. In: Proceedings of the International Symposium on Distributed Autonomous Robotic Systems, DARS 2008 (2008)Google Scholar
  18. 18.
    Pais, D., Cao, M., Leonard, N.E.: Formation shape and orientation control using projected collinear tensegrity structures. In: Proceedings of the 2009 American Control Conference (2009)Google Scholar
  19. 19.
    Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1987), pp. 25–34 (1987)Google Scholar
  20. 20.
    Sauter, J.A., Matthews, R., Parunak, H., Brueckner, S.A.: Performance of digital pheromones for swarming vehicle control. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 903–910 (2005)Google Scholar
  21. 21.
    Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Autonomous Robots 17, 137–162 (2004)CrossRefGoogle Scholar
  22. 22.
    Turgut, A.E., Celikkanat, H., Gokce, F., Sahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intelligence 2, 97–120 (2008)CrossRefGoogle Scholar
  23. 23.
    Winfield, A.F.T., Liu, W., Nembrini, J., Mertinoli, A.: Modelling a wireless connected swarm of mobile robots. Swarm Intelligence 2, 241–266 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert J. Mullen
    • 1
  • Dorothy Monekosso
    • 2
  • Sarah Barman
    • 1
  • Paolo Remagnino
    • 1
  1. 1.Digital Image Research Centre, CISMKingston UniversityLondonEngland
  2. 2.School of Computing and MathematicsUlster UniversityBelfastNorthern Ireland

Personalised recommendations