Global Gravity Field Models and Their Use in Earth System Research

  • Roland PailEmail author
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


The launch of dedicated gravity satellite missions such as CHAMP, GRACE and GOCE has revolutionized our knowledge of the Earth’s gravity field. Since the gravity field reflects mass distribution and mass transport through the complex system Earth, a precise knowledge of the global gravity field and its temporal variations is important for many areas of Earth system research, such as solid Earth geophysics, oceanography, hydrology, glaciology, atmospheric and climate research. In this paper the progress of global gravity field modelling based on satellite data is reviewed, with special emphasis on first results of the ESA mission GOCE, where the new observation type of satellite gradiometry enables to derive high-resolution static gravity field models. Additionally, first combined satellite-only gravity field models based on GRACE and GOCE, making benefit of the individual strengths of these two missions, are addressed, and the application of these gradually improving gravity field models in several fields of geoscientific research is discussed.


Gravity Field Satellite Laser Range Gravity Field Model Mean Dynamic Topography Satellite Altimetry Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges the European Space Agency for the provision of the GOCE data. Parts of the work described in this manuscript are financed through European Space Agency contract no. 18308/04/NL/MM.


  1. Albertella A, Wang X, Rummel R (2010) Filtering of altimetric sea surface heights with a global approach. In: Mertikas SP (ed) Gravity, geoid and earth observation, IAG symposia, vol. 135. Springer, Berlin, pp 247–252Google Scholar
  2. Allison I, Alley RB, Fricker HA, Thonmas RH, Warner RC (2009) Ice sheet mass balance and sea level. Antarct Sci 21:413–426. doi: 10.1017/S0954102009990137 CrossRefGoogle Scholar
  3. Bruinsma SL, Lemoine J-M, Biancale R, Valès N (2010a) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45:587–601. doi: 10.1016/j.asr.2009.10.012 CrossRefGoogle Scholar
  4. Bruinsma SL, Marty JC, Balmina G, Biancale R, Förste C, Abrikosov O, Neumeyer H (2010b) GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium (28 June–2 July 2010, Bergen, Norway), ESA publication SP-686, The Netherlands, ISBN (online) 978-92-9221-250-6, ESA/ESTECGoogle Scholar
  5. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first earth explorer core mission. In: Beutler G et al (ed) Earth gravity field from space—from sensors to earth science, space sciences series of ISSI, vol 18. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 419–432, ISBN: 1-4020-1408-2Google Scholar
  6. Fecher T, Pail R, Gruber T (2010) Global gravity field determination from terrestrial data. Poster presented at the American geophysical union fall meeting, San FranciscoGoogle Scholar
  7. Fecher T, Pail R, Gruber T (2011) Global gravity field determination by combining GOCE and complementary data. In: Ouwehand L et al. (ed) In: Proceedings of the 4th international GOCE user workshop, ESA Publication SP-696, ESA/ESTEC, Noordwijk, The Netherlands, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042XGoogle Scholar
  8. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer KH, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, König R, Meyer U (2008) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abstr 10, EGU2008-A-03426, SRef-ID: 1607–7962/gra/EGU2008-A-03426Google Scholar
  9. Gerlach C, Földvary L, Svehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer H, Peters T, Rothacher M, Rummel R (2003) A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys Res Lett 30:20. doi: 10.1029/2003/GL018025 Google Scholar
  10. Han SC, Shum CK, Jekeli C, Alsdorf D (2005) Improved estimation of terrestrial water storage changes from GRACE. Geophys Res Lett 32(6):L07302Google Scholar
  11. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864. doi: 10.1111/j.1365-246X.2009.04139.x CrossRefGoogle Scholar
  12. Hosse M, Pail R, Horwath M, Mahatsente R, Götze H, Jahr T, Jentzsch M, Gutknecht BD, Köther N, Lücke O, Sharma R, Zeumann S (2011) Integrated modeling of satellite gravity data of active plate margins—bridging the gap between geodesy and geophysics. Poster presented at the AGU fall meeting, San FranciscoGoogle Scholar
  13. Jäggi A, Beutler G, Meyer U, Prange L, Dache R, Mervart L (2009) AIUB-GRACE02S—status of GRACE gravity field recovery using the celestial mechanics approach. Presented at the IAG scientific assembly, 31 Aug–4 Sept 2009, Buenos Aires, ArgentinaGoogle Scholar
  14. Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36:L17102Google Scholar
  15. Lemoine FG, Luthke SB, Rowlands DD, Chinn DS, Klosko SM, Cox CM (2007) The use of mascons to resolve time-variable gravity from GRACE. In: Rizos C, Tregoning P (eds) Dynamic planet—monitoring and understanding a dynamic planet with geodetic and oceanographic tools, Springer, Berlin, pp 231–236Google Scholar
  16. Liebig V, Herland E-A, Briggs S, Grass H (2007) The changing earth—new scientific challenges for ESA’s living planet programme. ESA SP-1304, European Space Agency, Noordwijk, The NetherlandsGoogle Scholar
  17. Lumpkin R, Garraffo Z (2005) Evaluating the decomposition of tropical atlantic drifter observations. J Atmos Oceanic Technol I 22:1403–1415CrossRefGoogle Scholar
  18. Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model.
  19. Migliaccio F, Reguzzoni M, Sansó F, Tscherning CC, Veicherts M (2010) GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium (28 June–2 July 2010, Bergen, Norway), ESA Publication SP-686, ISBN (Online) 978-92-9221-250-6, ESA/ESTEC, The NetherlandsGoogle Scholar
  20. Pail R, Goiginger H, Mayrhofer R, Schuh W-D, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010a) Global gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium (28 June–2 July 2010, Bergen, Norway), ESA Publication SP-686, ISBN (Online) 978-92-9221-250-6, ESA/ESTEC, The NetherlandsGoogle Scholar
  21. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010b) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi: 10.1029/2010GL044906 CrossRefGoogle Scholar
  22. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansó F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843. doi: 10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  23. Prange L (2011) Global gravitiy field determination using the GPS measurements made onboard the low earth orbiting satellite CHAMP. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 81, Dissertation, Universität BernGoogle Scholar
  24. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, Koenig R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perossanz F (2002) A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14):1692. doi:  10.1029/2002GL015064 Google Scholar
  25. Rummel R, Gruber T, Koop R (2004) High level processing facility for GOCE: products and processing strategy. In: Lacoste H (ed) Proceedings of the 2nd international GOCE user workshop “GOCE, the geoid and oceanography, ESA SP-569, ESA, ISBN (Print) 92-9092-880-8, ISSN 1609-042XGoogle Scholar
  26. Stummer C, Fecher T, Pail R (2011) Alternative method for angular rate determination within the GOCE gradiometer processing. J Geodesy 85(9):585–596. doi: 10.1007/s00190-011-0461-3 CrossRefGoogle Scholar
  27. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Transactions, AGU vol 88 (52), Fall meeting supplement, Abstract G42A-03Google Scholar
  28. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India from satellite gravity observations. Geophys Res Lett 36:L18401. doi: 10.1029/2009GL039401 CrossRefGoogle Scholar
  29. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi: 10.1029/2009GL040222 CrossRefGoogle Scholar
  30. Werth S, Güntner A, Petrovic S, Schmidt R (2009a) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci Lett 277:166–173. doi: 10.1016/j.epsl.2008.10.021 CrossRefGoogle Scholar
  31. Werth S, Güntner A, Schmidt R, Kusche J (2009b) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):1499–1515. doi: 10.1111/j.1365-246X.2009.04355.x CrossRefGoogle Scholar
  32. Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501. doi: 10.1029/2008GL034816 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Astronomical and Physical GeodesyTechnische Universität MünchenMunichGermany

Personalised recommendations