In this paper, we show the detrimental effects of Co-Channel Interference (CCI) in Molecular Communications in the context of the Communication via Diffusion (CvD) system. The effects of CCI are evaluated with respect to system performance parameters, probability of hitting to the intended receiver and the channel capacity, while considering additional environmental affects such as the Inter symbol Interference (ISI). Based on our simulation results in a 3D diffusion environment, we conclude that similar to classical wireless communication systems, CCI is an important source that adversely affects the performance in a CvD system. Also, we show that a molecular reuse range concept which is analogous to the frequency reuse range in wireless communications, can be used to cope up and control the severity of CCI where necessary.


nanonetworks molecular communication communication via diffusion interference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Brunetti, F., Blazquez, C.: Nanonetworks: A new communication paradigm. Elsevier Computer Networks 52(12), 2260–2279 (2008)CrossRefGoogle Scholar
  2. 2.
    Atakan, B., Akan, O.B.: On Channel Capacity and Error Compensation in Molecular Communication. In: Priami, C., Dressler, F., Akan, O.B., Ngom, A. (eds.) Transactions on Computational Systems Biology X. LNCS (LNBI), vol. 5410, pp. 59–80. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Atakan, B., Akan, O.B.: Deterministic capacity of information flow in molecular nanonetworks. Elsevier Nano Communication Networks 1(1), 31–42 (2010)CrossRefGoogle Scholar
  4. 4.
    Cobo, L.C., Akyildiz, I.F.: Bacteria-based communication in nanonetworks. Elsevier Nano Communication Networks 1(4), 244–256 (2010)CrossRefGoogle Scholar
  5. 5.
    Enomoto, A., Moore, M., Nakano, T., Egashira, R., Suda, T.: A Molecular Communication System Using a Network of Cytoskeletal Filaments. In: 9th Nanotechnology Conference and Trade Show (NANOTECH 2006), pp. 725–728 (May 2006)Google Scholar
  6. 6.
    Freitas, R.A.: Nanomedicine, Vol. I: Basic Capabilities, 1st edn. Landes Bioscience (1999)Google Scholar
  7. 7.
    Garralda, N., Llatser, I., Cabellos-Aparicio, A., Pierobon, M.: Simulation-based evaluation of the diffusion-based physical channel in molecular nanonetworks. In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 443–448. IEEE (April 2011)Google Scholar
  8. 8.
    Giné, L.P., Akyildiz, I.F.: Molecular Communication Options for Long Range Nanonetworks. Elsevier Computer Networks 53(16), 2753–2766 (2009)CrossRefGoogle Scholar
  9. 9.
    Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Advances in Physics 36(6), 695–798 (1987)CrossRefGoogle Scholar
  10. 10.
    Kuran, M.S., Birkan Yilmaz, H., Tugcu, T., Özerman, B.: Energy model for communication via diffusion in nanonetworks. Elsevier Nano Communication Networks 1(2), 86–95 (2010)CrossRefGoogle Scholar
  11. 11.
    Kuran, M.S., Yilmaz, H.B., Tugcu, T.: Effects of routing for communication via diffusion system in the multi-node environment. In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 461–466. IEEE (April 2011)Google Scholar
  12. 12.
    Kuran, M.S., Yilmaz, H.B., Tugcu, T., Akyildiz, I.F.: Modulation Techniques for Communication via Diffusion in Nanonetworks. In: 2011 IEEE International Conference on Communications (ICC), pp. 1–5. IEEE (June 2011)Google Scholar
  13. 13.
    Kuscu, M., Akan, O.B.: A nanoscale communication channel with fluorescence resonance energy transfer (FRET), pp. 425–430 (April 2011)Google Scholar
  14. 14.
    MacLennan, B.J.: Morphogenesis as a model for nano communication. Elsevier Nano Communication Networks 1(3), 199–208 (2010)CrossRefGoogle Scholar
  15. 15.
    Mahfuz, M.U., Makrakis, D., Mouftah, H.T.: On the characterization of binary concentration-encoded molecular communication in nanonetworks. Elsevier Nano Communication Networks 1(4), 289–300 (2010)CrossRefGoogle Scholar
  16. 16.
    Moore, M.J., Nakano, T.: Addressing by beacon coordinates using molecular communication. In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 455–460. IEEE (April 2011)Google Scholar
  17. 17.
    Moore, M.J., Suda, T., Oiwa, K.: Molecular Communication: Modeling Noise Effects on Information Rate. IEEE Transactions on NanoBioscience 8(2), 169–180 (2009)CrossRefGoogle Scholar
  18. 18.
    Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., Arima, K.: Molecular Communication for Nanomachines Using Intercellular Calcium Signaling. In: 5th IEEE Conference on Nanotechnology (IEEE-NANO 2005), vol. 2, pp. 478–481 (July 2005)Google Scholar
  19. 19.
    Pierobon, M., Akyildiz, I.F.: A physical end-to-end model for molecular communication in nanonetworks. IEEE Journal on Selected Areas in Communications 28(4), 602–611 (2010)CrossRefGoogle Scholar
  20. 20.
    Srinivas, K.V., Adve, R.S., Eckford, A.W.: Molecular communication in fluid media: The additive inverse Gaussian noise channel (December 2010)Google Scholar
  21. 21.
    Suda, T., Moore, M., Nakano, T., Egashira, R., Enomoto, A.: Exploratory Research on Molecular Communication between Nanomachines. In: Genetic and Evolutionary Computaion Conference (GECCO 2005). ACM (June 2005)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Mehmet Şükrü Kuran
    • 1
  • Tuna Tugcu
    • 1
  1. 1.Department of Computer EngineeringBogazici UniversityBebekTurkey

Personalised recommendations