A Model Driven Reverse Engineering Framework for Extracting Business Rules Out of a Java Application

  • Valerio Cosentino
  • Jordi Cabot
  • Patrick Albert
  • Philippe Bauquel
  • Jacques Perronnet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7438)


In order to react to the ever-changing market, every organization needs to periodically reevaluate and evolve its company policies. These policies must be enforced by its Information System (IS) by means of a set of business rules that drive the system behavior and data. Clearly, policies and rules must be aligned at all times but unfortunately this is a challenging task. In most ISs implementation of business rules is scattered among the code so appropriate techniques must be provided for the discovery and evolution of evolving business rules.

In this paper we describe a model driven reverse engineering framework aiming at extracting business rules out of Java source code. The use of modeling techniques facilitate the representation of the rules at a higher-abstraction level which enables stakeholders to understand and manipulate them.


Business Rule Java Application Model Drive Engineer Atlas Transformation Language Variable Declaration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sneed, H.M., Erdös, K.: Extracting business rules from source code. In: WPC, pp. 240–247 (1996)Google Scholar
  2. 2.
    Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352–357 (1984)zbMATHCrossRefGoogle Scholar
  3. 3.
    Tip, F.: A survey of program slicing techniques. Journal of Progr. Lang. 3(3), 121–189 (1995)Google Scholar
  4. 4.
    Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: Modisco: a generic and extensible framework for model driven reverse engineering. In: ASE, pp. 173–174 (2010)Google Scholar
  5. 5.
    Link: Atlas transformation language,
  6. 6.
    Korel, B., Yalamanchili, S.: Forward computation of dynamic program slices. In: ISSTA, pp. 66–79 (1994)Google Scholar
  7. 7.
    Mahe, V., Martinez Perez, S., Doux, G., Brunelière, H., Cabot, J.: Portolan: a model-driven cartography framework. Technical Report RR-7542 (2011)Google Scholar
  8. 8.
  9. 9.
    Baxter, I., Hendryx, S.: A standards-based approach to extracting business rules,
  10. 10.
    Jouault, F.: Loosely coupled traceability for atl. In: ECMDA, pp. 29–37 (2005)Google Scholar
  11. 11.
    Galvão, I., Goknil, A.: Survey of traceability approaches in model-driven engineering. In: EDOC, pp. 313–326 (2007)Google Scholar
  12. 12.
    Huang, H., Tsai, W.T., Bhattacharya, S., Chen, X.P., Wang, Y., Sun, J.: Business rule extraction from legacy code. In: COMPSAC, pp. 162–167 (1996)Google Scholar
  13. 13.
    Putrycz, E., Kark, A.W.: Recovering Business Rules from Legacy Source Code for System Modernization. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 107–118. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Barbier, F., Deltombe, G., Parisy, O., Youbi, K.: Model driven reverse engineering: Increasing legacy technology independence. In: IWRE (2011)Google Scholar
  15. 15.
    Fu, G., Shao, J., Embury, S.M., Gray, W.A., Liu, X.: A framework for business rule presentation. In: DEXA, pp. 922–926 (2001)Google Scholar
  16. 16.
    Zou, Y., Lau, T., Kontogiannis, K., Tong, T., McKegney, R.: Model-driven business process recovery. In: WCRE, pp. 224–233 (2004)Google Scholar
  17. 17.
    Felix Lösch, J.L., Schmidberger, R.: Instrumentation of java program code for control flow analysis (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Valerio Cosentino
    • 1
    • 2
  • Jordi Cabot
    • 1
  • Patrick Albert
    • 2
  • Philippe Bauquel
    • 3
  • Jacques Perronnet
    • 3
  1. 1.AtlanMod, INRIA & EMNNantesFrance
  2. 2.IBM CASFrance
  3. 3.IBMFrance

Personalised recommendations