Whispering Interactions to the End User Using Rules

  • Benjamin Jailly
  • Christophe Gravier
  • Julien Subercaze
  • Marius Preda
  • Jacques Fayolle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7438)

Abstract

The issue of e-Maintenance, i.e. the remote maintenance of devices, is more and more important as the loose-coupling between center of competencies and productions sites is increasing. Maintenance operators have to know procedures for all devices they are in charge of. Whispering possible interactions to operators when they operate could ease their task and increase their productivity. In this paper, we propose to model maintenance procedures (therefore sequences of actions of human operators) using the Semantic Web standards. The system can infer the possible next actions from the human operator, and assist him by suggesting the next operation steps. An analysis of the use’s trace is also proposed in order to hint operators on improvements in his processes.

Keywords

Semantic Web Sequences Rules Human Computer Interface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muller, A., Marquez, A.C., Iung, B.: On the concept of e-maintenance: Review and current research. Reliability Engineering & System Safety 93(8), 1165–1187 (2008)CrossRefGoogle Scholar
  2. 2.
    Lung, B., Levrat, E., Marquez, A.C., Erbe, H.: Conceptual framework for e-Maintenance: Illustration by e-Maintenance technologies and platforms. Annual Reviews in Control 33(2), 220–229 (2009)CrossRefGoogle Scholar
  3. 3.
    Lindstaedt, S.N., Beham, G., Kump, B., Ley, T.: Getting to Know Your User – Unobtrusive User Model Maintenance within Work-Integrated Learning Environments. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 73–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Henze, N., Dolog, P., Nejdl, W.: Reasoning and ontologies for personalized e-learning in the semantic web. Educational Technology & Society 7(4), 82–97 (2004)Google Scholar
  5. 5.
    Köck, M., Paramythis, A.: Activity sequence modelling and dynamic clustering for personalized e-learning. User Modeling and User-Adapted Interaction 21, 51–97 (2011)CrossRefGoogle Scholar
  6. 6.
    Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Articial Intelligence 19(1), 17–37 (1982)CrossRefGoogle Scholar
  7. 7.
    O’Connor, M.F., Knublauch, H., Tu, S., Grosof, B.N., Dean, M., Grosso, W., Musen, M.A.: Supporting Rule System Interoperability on the Semantic Web with SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 974–986. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Grosof, B., Dean, M., Kife, M.: The Silk System: Scalable higher-order defeasible rules. In: RuleML 2009. LNCS, vol. 5858, Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Halashek-Wiener, C., Parsia, B., Sirin, E.: Description Logic Reasoning with Syntactic Updates. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 722–737. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Ukkonen, E.: Constructing suffix trees on-line in linear time. In: Proc. Information Processing, pp. 484–492. Elsevier (1992)Google Scholar
  11. 11.
    Jailly, B., Gravier, C., Preda, M., Fayolle, J.: Interactive mixed reality for collaborative remote laboratories. In: Proceedings of the Third International ACM Workshop on Multimedia Technologies for Distance Learning, MTDL 2011, pp. 1–6 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benjamin Jailly
    • 1
    • 2
    • 3
    • 4
  • Christophe Gravier
    • 1
    • 2
    • 3
    • 4
  • Julien Subercaze
    • 1
    • 2
    • 3
    • 4
  • Marius Preda
    • 5
  • Jacques Fayolle
    • 1
    • 2
    • 3
    • 4
  1. 1.Université de LyonSaint-ÉtienneFrance
  2. 2.Université de Saint-ÉtienneSaint-ÉtienneFrance
  3. 3.Télécom Saint-Étienne, école associée de l’Institut TélécomSaint-ÉtienneFrance
  4. 4.Laboratoire Télécom Claude Chappe (LT2C)Saint-ÉtienneFrance
  5. 5.ARTEMIS, Télécom SudParis, Institut TélécomFrance

Personalised recommendations