Efficient Computation of Observation Impact in 4D-Var Data Assimilation

  • Alexandru Cioaca
  • Adrian Sandu
  • Eric De Sturler
  • Emil Constantinescu
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 377)

Abstract

Data assimilation combines information from an imperfect model, sparse and noisy observations, and error statistics, to produce a best estimate of the state of a physical system. Different observational data points have different contributions to reducing the uncertainty with which the state is estimated. Quantifying the observation impact is important for analyzing the effectiveness of the assimilation system, for data pruning, and for designing future sensor networks. This paper is concerned with quantifying observation impact in the context of four dimensional variational data assimilation. The main computational challenge is posed by the solution of linear systems, where the system matrix is the Hessian of the variational cost function. This work discusses iterative strategies to efficiently solve this system and compute observation impacts.

Keywords

Four dimensional variational data assimilation observation impact nonlinear optimization preconditioning adjoint model iterative linear solvers 

References

  1. 1.
    Daley, R.: Atmospheric data analysis. Cambridge University Press (1991)Google Scholar
  2. 2.
    Kalnay, E.: Atmospheric modeling, data assimilation and predictability. Cambridge University Press (2002)Google Scholar
  3. 3.
    Alekseev, A.K., Navon, I.M., Steward, J.L.: Comparison of Advanced Large-scale Minimization Algorithms for the Solution of Inverse Ill-posed Problems. Journal of Optimization Methods & Software 24, 63–87 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cioaca, A., Alexe, M., Sandu, A.: Second Order Adjoints for Solving PDE-constrained Optimization Problems. Optimization Methods and Software (2011) (to appear)Google Scholar
  5. 5.
    Baker, N.L., Langland, R.H.: Diagnostics for evaluating the impact of satellite observations. In: Park, S.K., Xu, L. (eds.) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, pp. 177–196. Springer, Berlin (2009)CrossRefGoogle Scholar
  6. 6.
    Baker, N.L., Daley, R.: Observation and Background Adjoint Sensitivity in the Adaptive Observation-targeting Problem. Q.J.R. Meteorol. Soc. 126, 1431–1454 (2000)CrossRefGoogle Scholar
  7. 7.
    Daescu, D.N.: On the Sensitivity Equations of Four-dimensional Variational (4D-Var) Data Assimilation. Monthly Weather Review 136(8), 3050–3065 (2008)CrossRefGoogle Scholar
  8. 8.
    Daescu, D.N., Todling, R.: Adjoint Sensitivity of the Model Forecast to Data Assimilation System Error Covariance Parameters. Quarterly Journal of the Royal Meteorological Society 136, 2000–2012 (2010)CrossRefGoogle Scholar
  9. 9.
    Liska, R., Wendroff, B.: Composite Schemes for Conservation Laws. SIAM Journal of Numerical Analysis 35(6), 2250–2271 (1998)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Giering, R., Kaminski, T.: Recipes for Adjoint Code Construction. ACM Transactions on Mathematical Software 24(4), 437–474 (1998)MATHCrossRefGoogle Scholar
  11. 11.
    Giering, R.: Tangent Linear and Adjoint Model Compiler, Users Manual 1.4 (1999), http://www.autodiff.com/tamc
  12. 12.
    Griewank, A.: On Automatic Differentiation. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp. 83–109. Kluwer Academic Publishers (1989)Google Scholar
  13. 13.
    Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: L-BFGS-B: A Limited Memory FORTRAN Code for Solving Bound Constrained Optimization Problems. Technical Report, NAM-11, EECS Department, Northwestern University (1994)Google Scholar
  14. 14.
    Gejadze, I., Le Dimet, F.-X., Shutyaev, V.: On Error Covariances in Variational Data Assimilation. Russian Journal of Numerical Analysis and Mathematical Modeling 22(2), 163–175 (2007)MATHCrossRefGoogle Scholar
  15. 15.
    Zupanski, M.: A Preconditioning Algorithm for Large-scale Minimization Problems. Tellus (45A), 478–492 (1993)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Alexandru Cioaca
    • 1
  • Adrian Sandu
    • 1
  • Eric De Sturler
    • 2
  • Emil Constantinescu
    • 3
  1. 1.Department of Computer ScienceVirginia TechBlacksburgUSA
  2. 2.Department of MathematicsVirginia TechBlacksburgUSA
  3. 3.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations