Advertisement

Analysis of Inverse Snyder Optimizations

  • Erika Harrison
  • Ali Mahdavi-Amiri
  • Faramarz Samavati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7380)

Abstract

Modern area preserving projections employed by cartographers and geographers have closed forms when transitioning between the sphere and the plane. Inversions - from the planar map to the spherical approximation of the Earth - are slower, requiring iterative root finding approaches or entirely undetermined. Recent optimizations of the common Inverse Snyder Equal Area Polyhedral projection have been fairly successful, however the work herein improves it further by adjusting the approximating polynomial. An evaluation against the original and improved optimizations is provided, along with a previously unexplored real-time analysis.

Keywords

equal area projection optimization Snyder projection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities, pp. 29–41. Springer, New York (1995)zbMATHGoogle Scholar
  2. 2.
    Canters, F.: Small-Scale Map Projection Design. Taylor & Francis, NY (2002)Google Scholar
  3. 3.
    Commission for Environmental Cooperation: North America (2004), http://atlas.nrcan.gc.ca/site/english/maps/archives/various/north_america_cec (online accessed May 01, 2011)
  4. 4.
    Google: Google Earth (2011), http://www.google.com/earth/index.html (online accessed November 20, 2011)
  5. 5.
    Google - Imagery: Google Maps (2010), http://maps.google.ca (online accessed December 11, 2010)
  6. 6.
    Gore, A.: The Digital Earth: Understanding our Planet in the 21st Century. California Science Center, Los Angeles, USA (January 31, 1998)Google Scholar
  7. 7.
    Harrison, E., Mahdavi-Amiri, A., Samavati, F.: Optimization of Snyder’s Inverse Polyhedral Projection. In: Intl. Conference on CyberWorlds, pp. 1–8. IEEE (2011)Google Scholar
  8. 8.
    Kimerling, A.J., Sahr, K., White, D., Song, L.: Comparing Geometrical Properties of Global Grids. Cartography and Geographic Information Science 26(4), 271–288 (1999)CrossRefGoogle Scholar
  9. 9.
    Lambert, J.H.: Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten. Mit 21 Textfiguren (1772)Google Scholar
  10. 10.
    van Leeuwen, D., Strebe, D.: A Slice-and-Dice Approach to Area Equivalence in Polyhedral Map Projections. Cartography and Geographic Information Science 33(4), 269–286 (2006)CrossRefGoogle Scholar
  11. 11.
    NASA: Blue Marble (2000), http://visibleearth.nasa.gov/ (online accessed December 11, 2010)
  12. 12.
    PYXIS Innovation Inc: How PYXIS Works (2011), http://www.pyxisinnovation.com/pyxwiki (online accessed May 01, 2011)
  13. 13.
    Snyder, J.P.: Map Projections - A Working Manual: U.S. Geological Survey Professional Paper 1396. U.S. Government Printing Office, Washington, DC (1987)Google Scholar
  14. 14.
    Snyder, J.P.: An Equal-Area Map Projection for Polyhedral Globes. Cartographica 29(1), 10–21 (1992)CrossRefGoogle Scholar
  15. 15.
    Snyder, J.P.: Flattening the Earth: Two Thousand Years of Map Projections. University of Chicago Press, Chicago (1997)Google Scholar
  16. 16.
    United States Department of the Interior: Map Projections: From Spherical Earth to Flat Map (2011), http://www.nationalatlas.gov/articles/mapping/a_projections.html (online accessed May 01, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erika Harrison
    • 1
  • Ali Mahdavi-Amiri
    • 1
  • Faramarz Samavati
    • 1
  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations