Xylem Cavitation and Embolism in Plants Living in Water-Limited Ecosystems

  • A. VilagrosaEmail author
  • E. Chirino
  • J.J. Peguero-Pina
  • T.S. Barigah
  • H. Cochard
  • E. Gil-Pelegrín


Water deficit is considered the main limiting factor for the establishment, survival, and growth of plants mainly in water-limited ecosystems. Plants have evolved a wide range of morphologic and functional mechanisms to adapt to arid environments. However, if the tension in the xylem conduits becomes too high, thus xylem cavitation can occur i.e., water column breakage. This results in the hydraulic disconnection of leaves and above-ground parts from roots because xylem conduits are filled with air and water vapor, and this phenomenon is called embolism. Therefore, the resistance of the xylem to cavitation and embolism is of paramount importance for plant functioning. In this chapter, we will review the role of plant hydraulics and xylem cavitation in the context of water-limited ecosystems and their relationship with other plant functional traits and with survival capacity. These topics will be analyzed and discussed on the basis of current knowledge and our research experiences.


Hydraulic Conductance Compression Wood Vulnerability Curve Root Hydraulic Conductance Cavitation Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter reviews and summarizes some of the outputs generated from research projects funded by the European Commission (CREOAK project QLRT-2001-01594; FUME Grant Agreement nº 243888), the Spanish Ministry of Science and Innovation (PERSIST CGL2006-07126; GRACCIE-CSD2007-00067 CONSOLIDER-INGENIO Program; SUMIDEROS SUM2008-00004-C03-03; CASISFOR AGL2010-21153-C02-02; SURVIVE CGL2011-30531-C02-02) and the Spanish Ministry of the Environment (ESTRES 063/SGTB/2007/7.1), as well as by the Regional Government of Valencia (XYLREFOR GRUPOS 03/155; APLITEC GV 05/208; INNOVA GVPRE/2008/085; FEEDBACKS-PROMETEO/2009/006).

We greatly thank the Regional Forest Service (Consellería de Infraestructures, Territori i Medi Ambient, Regional Government of Valencia) for funding our research goals. We also sincerely thank Jacqueline Scheiding for the English proofreading of the text and two anonymous reviewers who provided excellent feedback for the manuscript improvement. Fundación CEAM is supported by Generalitat Valenciana.


  1. Ackerly DD (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44CrossRefGoogle Scholar
  2. Addington RN, Donovan LA, Mitchell RJ, Vose JM, Pecot SD, Jack SB, Hacke UG, Sperry JS, Oren R (2006) Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductances in xeric and mesic habitats. Plant Cell Environ 29:535–545CrossRefGoogle Scholar
  3. Alder NN, Sperry JS, Pockman WT (1996) Root and stem xylem embolism, stomatal conductance and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105:293–301CrossRefGoogle Scholar
  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mcdowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259:660–684CrossRefGoogle Scholar
  5. Alsina MM, De Herralde F, Aranda X, Save R. Biel C (2007) Water relations and vulnerability to embolism are not related: experiments with eight grapevine cultivars. Vitis 46:1–6Google Scholar
  6. Andersen CP, Bussler BH, Chaney WR, Pope PE, Byrnes WR (1989) Concurrent establishment of ground cover and hardwood trees on reclaimed mined land and un mined reference sites. Forest Ecol Manag 28:81–99CrossRefGoogle Scholar
  7. Angeles G, Bond B, Boyer JS, Brodribb T, Brooks JR, Burns MJ, Cavender-Bares J, Clearwater M, Cochard H, Comstock J, Davis SD, Domec J-C, Donovan L, Ewers F, Gartner B, Hacke U, Hinckley T, Holbrook NM, Jones HG, Kavanagh K, Law B, López-Portillo J, Lovisolo C, Martin T, Martínez-Vilalta J, Mayr S, Meinzer FC, Melcher P, Mencuccini M, Mulkey S, Nardini A, Neufeld HS, Passioura J, Pockman WT, Pratt RB, Rambal S, Richter H, Sack L, Salleo S, Schubert A, Schulte P, Sparks JP, Sperry J, Teskey R, Tyree M (2004) The cohesion-tension theory. New Phytol 163:451–452CrossRefGoogle Scholar
  8. Barigah TS, Ibrahim T, Bogard A, Faivre-Vuillin B, Lagneau LA, Montpied P, Dreyer E (2006) Irradiance-induced plasticity in the hydraulic properties of saplings of different temperate broad-leaved forest tree species. Tree Physiol 26:1505–1516PubMedCrossRefGoogle Scholar
  9. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309PubMedCrossRefGoogle Scholar
  10. Bhaskar R, Valiente-Banuet A, Ackerly DD (2007) Evolution of hydraulic traits in closely related species pairs from mediterranean and nonmediterranean environments of North America. New Phytol 176:718–726PubMedCrossRefGoogle Scholar
  11. Black CR (1979). The relationship between transpiration rate, water potential, and resistances to water movement in sunflower (Helianthus annuus L). J Exp Bot 30:235–243CrossRefGoogle Scholar
  12. Böhm J (1893) Capillarität und Saftsteigen. Ber Dtsch Bot Ges 11:203–212Google Scholar
  13. Boyer JS (1985) Water transport. Ann Rev Plant Physiol 36:473–516CrossRefGoogle Scholar
  14. Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann Sci For 53:347–358CrossRefGoogle Scholar
  15. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  16. Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, Mcdowell NG, Pockman WT (2009) Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ 7:185–189CrossRefGoogle Scholar
  17. Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA (2010) The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154:1088–1095PubMedCrossRefGoogle Scholar
  18. Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584PubMedCrossRefGoogle Scholar
  19. Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173PubMedCrossRefGoogle Scholar
  20. Brodribb TJ, Holbrook NM (2004) Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol 162:663–670CrossRefGoogle Scholar
  21. Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles-Wilhelm F (2006) Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant Cell Environ 29:2153–2167PubMedCrossRefGoogle Scholar
  22. Canny MJ (1995a) Potassium cycling in Helianthus: ions of the xylem sap and secondary vessel formation. Phil Trans R Soc Lond B 348:457–469CrossRefGoogle Scholar
  23. Canny MJ (2001) Contributions to the debate on water transport. Am J Bot 88:43–46PubMedCrossRefGoogle Scholar
  24. Chapin FS (1991) Effects of multiple stresses on nutrient availability and use. In: Mooney HA, Winner WE, Pell EJ, Chu E (eds), Response of plants to multiple stresses. Academic Press, San Diego, pp 67–88Google Scholar
  25. Chirino E, Vilagrosa A, Cortina J, Valdecantos A, Fuentes D, Trubat R, Luis VC, Puértolas J, Bautista S, Baeza J, Penuelas JL, Vallejo VR (2009) Ecological restoration in degraded drylands: the need to improve the seedling quality and site conditions in the field. In: Grossberg SP (ed), Forest management, Nova Science Publishers, Inc., New York, pp 85–158Google Scholar
  26. Chirino E, Vilagrosa A, Hernández EI, Matos A, Vallejo VR (2008) Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in mediterrranean climate. Forest Ecol Manag 256:779–785CrossRefGoogle Scholar
  27. Choat B, Drayton WM, Brodersen C, Matthews MA, Shackel KA, Wada H, McElrone AJ (2010) Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species. Plant Cell Environ 33:1502–1512PubMedGoogle Scholar
  28. Christman MA, Sperry JS, Adler FR (2009) Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer. New Phytol 182:664–674PubMedCrossRefGoogle Scholar
  29. Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels, and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720PubMedCrossRefGoogle Scholar
  30. Clearwater MJ, Goldstein G (2005) Embolism repair and long distance water transport. In: Holbrook NM, Zwieneicki MA. (eds) Vascular transport in plants, Elsevier Academic Press, Burlington, pp 375–400CrossRefGoogle Scholar
  31. Cochard H (2006) Cavitation in trees. C R Physique 7:1018–1026CrossRefGoogle Scholar
  32. Cochard H, Bodet C, Ameglio T, Cruiziat P (2000). Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts? Plant Physiol 124:1191–1202PubMedCrossRefGoogle Scholar
  33. Cochard H, Cruiziat P, Tyree MT (1992) Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol 100:205–209PubMedCrossRefGoogle Scholar
  34. Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Ameglio T (2005) Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiol Plant 124:410–418CrossRefGoogle Scholar
  35. Cochard H, Forestier S, Améglio T (2001) A new validation of the Scholander pressure chamber technique based on stem diameter variations. J Exp Bot 52:1361–1365PubMedCrossRefGoogle Scholar
  36. Cochard H, Froux F. Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408PubMedCrossRefGoogle Scholar
  37. Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A (2010) Does sample length influence the shape of xylem embolism vulnerability curves? A test with the cavitron spinning technique. Plant Cell Environ 33:1543–1552PubMedGoogle Scholar
  38. Cochard H, Herbette S, Hernandez E, Hölttä T, Mencuccini M (2010) The effects of sap ionic composition on xylem vulnerability to cavitation. J Exp Bot 61:275–285PubMedCrossRefGoogle Scholar
  39. Cochard H, Lemoine D, Dreyer E (1999) The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L. Plant Cell Environ 22:101–108CrossRefGoogle Scholar
  40. Cochard H, Martin R, Gross P, Bogeat-Triboulot MB (2000a) Temperature effects on hydraulic conductance and water relations of Quercus robur L. J Exp Bot 51:1255–1259PubMedCrossRefGoogle Scholar
  41. Cochard H, Bodet C, Ameglio T, Cruiziat P (2000b) Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts? Plant Physiol 124:1191–1202Google Scholar
  42. Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree MT, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143:122–130PubMedCrossRefGoogle Scholar
  43. Cochard H. (2006) Cavitation in trees. C R Phys 7:1018–1026CrossRefGoogle Scholar
  44. Cochard H, Holtta T, Herbette S, Delzon S, Mencuccini M (2009) New insights into the mechanisms of water-stress-induced cavitation in conifers. Plant Physiol 151:949–954PubMedCrossRefGoogle Scholar
  45. Corcuera L, Camarero JJ, Gil-Pelegrín E (2004) Effects of a severe drought on growth and wood anatomical properties of Quercus faginea. IAWA Jour 25:185–204Google Scholar
  46. Corcuera L, Camarero JJ, Sisó S, Gil-Pelegrin E (2006) Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape 20:91–98Google Scholar
  47. Corcuera L, Cochard H, Gil-Pelegrin E, Notivol E (2011) Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. Trees-Struct Funct 25:1033–1042CrossRefGoogle Scholar
  48. Corcuera L, Morales F, Abadia A, Gil-Pelegrin E (2005) Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula. Tree Physiol 25:599–608PubMedCrossRefGoogle Scholar
  49. Crombie D S, Hipkins M F, Milburn A (1985) Gas penetration of pit membranes in the xylem of rhododendron as the cause of acoustically detectable sap cavitation. Aust J Plant Physiol 12:445–53CrossRefGoogle Scholar
  50. Davis SD, Ewers FW, Sperry JS, Portwood KA, Crocker MC, Adams GC (2002) Shoot dieback during prolonged drought in Ceanothus chaparral of California: a possible cause of hydraulic failure. Am J Bot 89:820–828PubMedCrossRefGoogle Scholar
  51. Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot 86:1367–1372PubMedCrossRefGoogle Scholar
  52. Delzon S, Douthe C, Sala A, Cochard H (2010) Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell Environ 33:2101–2111PubMedCrossRefGoogle Scholar
  53. Demmig-Adams B, Adams III WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21PubMedCrossRefGoogle Scholar
  54. Dietze M, Moorcroft PR (2011) Tree mortality in the eastern and central United States: patterns and drivers. Glob Change Biol 17:3312–3326CrossRefGoogle Scholar
  55. Dixon HH, Joly J (1895) On the ascent of sap. Philos Trans R Soc Lond 186:563–576CrossRefGoogle Scholar
  56. Domec J-C, Scholz FG, Meinzer FC, Goldstein G, Villalobos-Vega R (2006) Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant Cell Environ 29:26–35PubMedCrossRefGoogle Scholar
  57. van Doorn WG, Hiemstra T, Fanourakis D (2011) Hydrogel regulation of xylem water flow: an alternative hypothesis. Plant Physiol 157:1642–1649PubMedCrossRefGoogle Scholar
  58. Earnshaw MJ (1993) Stress indicators: electrolyte leakage. In: Hendry GAF, Grime JP (eds) Methods in comparative plant ecology. Chapman and Hall, London, pp 152–154Google Scholar
  59. Esteso-Martinez J, Camarero JJ, Gil-Pelegrin E (2006) Competitive effects of herbs on Quercus faginea seedlings inferred from vulnerability curves and spatial-pattern analyses in a Mediterranean stand (Iberian System, northeast Spain). Ecoscience 13:378–387CrossRefGoogle Scholar
  60. Ewers B, Oren R, Sperry J (2000) Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ 23:1055–1066CrossRefGoogle Scholar
  61. Feild TS, Brodribb T (2001) Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127:314–320CrossRefGoogle Scholar
  62. Fonseca DE (1999) Manipulaciones de las características morfoestructurales de plantonesde especies forestales mediterráneas producidas en vivero. Zaragoza M.Sc Thesis. CIHEAM-IAMZ, ZaragozaGoogle Scholar
  63. Franks PJ, Gibson A, Bachelard EP (1995) Xylem permeability and embolism susceptibility in seedlings of Eucalyptus camaldulensis Dehnh from two different climatic zones. Aust J Plant Physiol 22:15–21CrossRefGoogle Scholar
  64. Frensch J, Steudle E (1989) Axial and radial hydraulic resistance to roots of maize (Zea mays L). Plant Physiol 91:719–726PubMedCrossRefGoogle Scholar
  65. Froux F, Ducrey M, Dreyer E, Huc R (2005) Vulnerability to embolism differs in roots and shoots and among three mediterranean conifers: consequences for stomatal regulation of water loss? Trees-Struct Funct 19:137–144CrossRefGoogle Scholar
  66. Galiano L, Martínez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol 190:750–759PubMedCrossRefGoogle Scholar
  67. Galvez DA, Landhäusser SM, Tyree MT (2011) Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol 31:250–257PubMedCrossRefGoogle Scholar
  68. Hacke U, Sauter JJ (1996) Drought-induced xylem dysfunction in petioles, branches and roots of Populus balsamifera L. and Alnus glutinosa (L) Gaertn. Plant Physiol 111:413–417PubMedGoogle Scholar
  69. Hacke UG, Sperry JS, Pittermann J (2000) Drought experience and cavitation resistance in six shrubs from the great basin, Utah. Basic Appl Ecol 1:31–41CrossRefGoogle Scholar
  70. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRefGoogle Scholar
  71. Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701PubMedCrossRefGoogle Scholar
  72. Hafren J, Daniel G, Westermark U (2000) The distribution of acidic and esterified pectin in cambium, developing xylem and mature xylem of Pinus sylvestris. IAWA J 21:157–168Google Scholar
  73. Hao GY, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Cao KF Goldstein G (2008) Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia 155:405–415PubMedCrossRefGoogle Scholar
  74. Harvey HP, Van den Driessche R (1997) Nutrition, xylem cavitation and drought resistance in hybrid poplar. Tree Physiol 17:647–654PubMedCrossRefGoogle Scholar
  75. Herbette S, Wortemann R, Awad H, Huc R, Cochard H, Barigah TS (2010) Insights into xylem vulnerability to cavitation in Fagus sylvatica L: phenotypic and environmental sources of variability. Tree Physiol 30:1448–1455PubMedCrossRefGoogle Scholar
  76. Herbette S. Cochard H (2010) Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiol 153:1932–1939PubMedCrossRefGoogle Scholar
  77. Hernández EI, Pausas JG, Vilagrosa A (2011) Leaf physiological traits in relation to resprouter ability in the Mediterranean Basin. Plant Ecol 212:1959–1966CrossRefGoogle Scholar
  78. Hernández EI, Vilagrosa A, Luis VC, Llorca M, Chirino E, Vallejo VR (2009) Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L and Quercus suber L grown under different conditions of fertilization and light regimes. Environ Exp Bot 67:269–276CrossRefGoogle Scholar
  79. Hernández EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244CrossRefGoogle Scholar
  80. Hertig E, Jacobeit J (2008) Downscaling future climate change: temperature scenarios for the Mediterranean area. Global Planet Change 63:127–131CrossRefGoogle Scholar
  81. Hoffmann WA, Marchin RM, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol 17:2731–2742CrossRefGoogle Scholar
  82. Holbrook NM, Zwieniecki MA (1999) Embolism repair and xylem tension. Do we need a miracle? Plant Physiol 120:7–10PubMedCrossRefGoogle Scholar
  83. Holbrook NM, Zwieniecki MA (2005) Vascular trasnport in plants. Elsevier Academic Press, USAGoogle Scholar
  84. Hölttä T, Cochard H, Nikinmaa E, Mencuccini M (2009) Capacitive effect of cavitation in xylem conduits: results from a dynamic model. Plant Cell Environ 32:10–21PubMedCrossRefGoogle Scholar
  85. Huang B, Nobel PS (1993) Hydraulic condctivity and anatomy along lateral roots of cacti—changes with soil water status. New Phytol 123:449–507CrossRefGoogle Scholar
  86. Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24:113–121CrossRefGoogle Scholar
  87. Huber B (1928) Weitere quantitative Untersuchungen über das Wasserleitungs system der Pflanzen. Jahrb Wiss Bot 67:877–959Google Scholar
  88. Hukin D, Cochard H, Dreyer E, Le Thiec D, Bogeat-Triboulot MB (2005) Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a popular from arid areas of Central Asia, differ from other poplar species?. J Exp Bot 53:2003–2010CrossRefGoogle Scholar
  89. IPCC (2010) Meeting report of the intergornmental panel on climate change, expert meeting on detection and attribution related to anthropogenic climate change. IPCC Working Group I Technical support unit, university of Bern, Switzerland, pp 55Google Scholar
  90. Jackson GE, Grace J (1996) Field measurements of xylem cavitation: are acoustic emissions useful? J Exp Bot 47:1643–1650CrossRefGoogle Scholar
  91. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488PubMedCrossRefGoogle Scholar
  92. Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD. 2007a. Xylem density, biomechanics, and anatomical traits correlate with water stress in seventeen evergreen shrub species of the Mediterranean-type climate region of South Africa. J Ecol 95:171–183CrossRefGoogle Scholar
  93. Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2008) Comparative community physiology: non-convergence in water relations among three semi-arid shrub communities. New Phytol 180:100–113PubMedCrossRefGoogle Scholar
  94. Jacobsen AL, Pratt RB, Ewers F, Davis SD (2007) Cavitation resistance among 26 chaparral species of southern California. Ecol Monogr 77:99–115CrossRefGoogle Scholar
  95. Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Stein A, Trifilò P, Nardini A (2011) Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? New Phytol 189:218–228PubMedCrossRefGoogle Scholar
  96. Jarbeau JA, Ewers FW, Davis SD (1995) The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant Cell Environ 18:189–196CrossRefGoogle Scholar
  97. Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–13PubMedCrossRefGoogle Scholar
  98. Johnson DM, Woodruff, DR McCulloh KA, Meinzer FC (2009) Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Tree Physiol 29:879–887PubMedCrossRefGoogle Scholar
  99. Jones HG (1992) Plants and Microclimate. A quantitative approach to environmental plant physiology. Cambridge University Press, CambridgeGoogle Scholar
  100. Kaldenhoff R, Ribas-Carbó M, Flexas-Sans J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance Plant Cell Environ 31:658–666PubMedCrossRefGoogle Scholar
  101. Kikuta SB, Hietz P, Richter H (2003) Vulnerability curves from conifer sapwood sections exposed over solutions with known water potentials. J Exp Bot 54:2149–2155PubMedCrossRefGoogle Scholar
  102. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854PubMedCrossRefGoogle Scholar
  103. Kolb KJ, Sperry JS, Lamont BB. (1996) A method for measuring xylem hydraulic conductance and embolism in entire root and shoot systems. J Exp Bot 47:1805–1810CrossRefGoogle Scholar
  104. Kozlowski T T, Kramer P J, Pallardy S G (1991) The physiological ecology of woody plants. Academic Press, TorontoGoogle Scholar
  105. Lamy JB, Bouffier L, Burlett R, Plomion C, Cochard H, Delzon S (2011) Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS ONE 6: e23476. doi: 10.1371/journal.pone.0023476 PubMedCrossRefGoogle Scholar
  106. Landhäusser SM, Lieffers V (2012) Defolitaion increases risk of carbon starvation in root systems of mature aspen. Trees-Struct Funct 26:653–661CrossRefGoogle Scholar
  107. Larcher W (1995) Physiological plant ecology. Ecophysiology and stress physiology of functional groups. Springer, BerlinGoogle Scholar
  108. Lemoine D, Cochard H, Granier A (2002) Within crown variation in hydraulic architecture in beech (Fagus sylvatica L.): evidence for a stomatal control of embolism. Ann For Sci 59:19–27CrossRefGoogle Scholar
  109. Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  110. Li Y, Sperry JS, Taneda H, Bush SE, Hacke UG (2008) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytol 177:558–568PubMedGoogle Scholar
  111. Lo Gullo MA, Nardini A, Salleo S, Tyree MT (1998) Changes in root hydraulic conductance of Olea oleaster seedlings following drought stress and irrigation. New Phytol 140:25–31CrossRefGoogle Scholar
  112. Lo Gullo MA, Salleo S (1991) Three different methods for measuring xylem cavitation and embolism: a comparison. Ann Bot London 67 (5):417–424Google Scholar
  113. Lovelock C, Feller I, Ball M, Engelbrecht B, Ewe (2006) Differences in plant function in phosphorus- and nitrogen limited mangrove ecosystems. New Phytol 72:514–522CrossRefGoogle Scholar
  114. Luis VC, Llorca M, Chirino E, Hernández E, Vilagrosa A (2010) Differences in morphology, gas exchange and root hydraulic conductance before planting in Pinus canariensis seedlings growing under different fertilization and light regimes. Trees-Struct Funct 24:1143–1150CrossRefGoogle Scholar
  115. Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96CrossRefGoogle Scholar
  116. Machado JL, Tyree MT (1994) Patterns of hydraulic architecture and water relations of two tropical canopy trees with contrasting leaf phonologies: Ochroma pyramidale and Pseudobombax septenatum Tree Physiol 14:219–240PubMedGoogle Scholar
  117. Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006) Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant Cell Environ 29:571–538PubMedCrossRefGoogle Scholar
  118. Maherali H, Pockman WT, Jackson RB (2004) Adaptative variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199CrossRefGoogle Scholar
  119. Markesteijn L, Poorter L, Bongers F, Paz H, Sack L (2011) Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. New Phytol 191:480–495PubMedCrossRefGoogle Scholar
  120. Martín JA, Solla A, Coimbra MA, Gil L (2005) Metabolic distinction of Ulmus minor xylem tissues after inoculation with Ophiostoma novo-ulmi. Phytochemistry 66:2458–2467PubMedCrossRefGoogle Scholar
  121. Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Ripullone F, Sass-Klaassen U, Zweifel R (2009) Hydraulic adjustments of Scots pine across Europe. New Phytol 184:353–364PubMedCrossRefGoogle Scholar
  122. Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29CrossRefGoogle Scholar
  123. Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130:2101–2110PubMedCrossRefGoogle Scholar
  124. Maseda PH, Fernandez RJ (2006) Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J Exp Bot 57:3963–3977PubMedCrossRefGoogle Scholar
  125. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Ann Rev Plant Biol. 59:595–624CrossRefGoogle Scholar
  126. Mayr S, Cochard H (2003) A new method for vulnerability analysis of small xylem areas reveals that compression wood of Norway spruce has lower hydraulic safety than opposite wood. Plant Cell Environ 26:1365–1371CrossRefGoogle Scholar
  127. Mayr S, Sperry JS (2010) Freeze-thaw-induced embolism in Pinus contorta: centrifuge experiments validate the ‘thaw-expansion hypothesis’ but conflict with ultrasonic emission data. New Phytol 185:1016–1024PubMedCrossRefGoogle Scholar
  128. Mayr S, Gruber A, Bauer H (2003) Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217:436–41PubMedCrossRefGoogle Scholar
  129. Mayr S, Wieser G, Bauer H (2006) Xylem temperatures during winter in conifers at the alpine timberline. Agr Forest Meteorol 137:81–88CrossRefGoogle Scholar
  130. McCulloh K, Meinzer F, Sperry JS, Lachenbruch B, Voelker S, Woodruff JC (2011) Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density. Oecologia 167:27–37PubMedCrossRefGoogle Scholar
  131. McDowell N, Pockman W, Allen D, Breshears D, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams D, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739PubMedCrossRefGoogle Scholar
  132. McElrone AJ, Jackson S, Habdas P (2008) Hydraulic disruption and passive migration by a bacterial pathogen in oak tree xylem. J Exp Bot 59:2649–2657PubMedCrossRefGoogle Scholar
  133. McElrone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB (2004) Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol 163:507–517CrossRefGoogle Scholar
  134. Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930CrossRefGoogle Scholar
  135. Mencuccini, M, Comstock J (1997) Vulnerability to cavitation in populations of two desert species, Hymenoclea salsola and Ambrosia dumosa, from different climatic regions. J Exp Bot 48:1323–1334CrossRefGoogle Scholar
  136. Milburn JA. (1991) Cavitation and emboli, development and significance. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 163–173Google Scholar
  137. Milburn JA (1996) Sap ascent in vascular plants: challengers to the cohesion theory ignore the significance of immature xylem and the recycling of Münch water. Ann Bot 78:399–407CrossRefGoogle Scholar
  138. Milburn JA, Johnson RPC (1966) The conduction of sap. II. Detection of vibrations produced by sap cavitation in Ricinus xylem. Planta 66:4–52CrossRefGoogle Scholar
  139. Miranda JD, Padilla FM, Martínez-Vilalta J, Pugnaire FI (2010) Woody species of a semiarid community are only moderately resistant to cavitation. Funct Plant Biol 37:828–839CrossRefGoogle Scholar
  140. Mitrakos K (1980) A theory for Mediterranean plant life. Acta Oecol-Oec Plant 1245–252Google Scholar
  141. Morales F, Abadía A, Abadía J (2006) Photoinhibition and photoprotection under nutrient deficiencies, drought, and salinity. In: Demmig-Adams B, Adams III WW, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation and environment. Springer, Dordrecht, pp 65–85CrossRefGoogle Scholar
  142. Nardini A, Gascó A, Trifilo P, Lo Gullo MA, Salleo S (2007) Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca2+ in the sap. J Exp Bot 58:2609–2615PubMedCrossRefGoogle Scholar
  143. Nardini A, Grego F, Trifilò P, Salleo S (2010) Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis. Tree Physiol 30:628–635PubMedCrossRefGoogle Scholar
  144. Nardini A, Lo Gullo MA, Salleo S (2011) Refilling embolized xylem conduits: Is it a matter of phloem unloading?. Plant Sci 180: 604–611PubMedCrossRefGoogle Scholar
  145. Nardini A, Salleo S (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees-Struct Funct 15:14–24CrossRefGoogle Scholar
  146. Nardini A, Salleo S, Andri S (2005) Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus L. cv. Margot). Plant Cell Environ 28:750–759CrossRefGoogle Scholar
  147. Nardini A, Tyree MT, Salleo S (2001) Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiol 125:1700–1709PubMedCrossRefGoogle Scholar
  148. Naveh Z and Lieberman AS (1993) Landscape ecology theory and applications. (2nd edn), Springer, New YorkGoogle Scholar
  149. Netherer S, Schopf A (2010) Potential effects of climate change on insect herbivores general aspects and a specific example (Pine processionary moth, Thaumetopoea pityocampa). Forest Ecol Manag 259:831–838CrossRefGoogle Scholar
  150. Netting AG (2009) Limitations within “the limits to tree height”. Brief communication. Am J Bot 96:542–544PubMedCrossRefGoogle Scholar
  151. Neufeld HS, Grantz DA, Meinzer FC, Goldstein G, Crisosto GM, Crisosto C (1992) Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiol 100:1020–1028PubMedCrossRefGoogle Scholar
  152. Nobel PS (1999). Physicochemical and environmental plant physiology. Academic Press, San Diego, LondonGoogle Scholar
  153. North GB, Martre P, Nobel PS (2004) Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet, dry, and rewetted soil. Plant Cell Environ 27: 219–228CrossRefGoogle Scholar
  154. North GB, Nobel PS (1992) Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytologist 120:9–19CrossRefGoogle Scholar
  155. Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003). Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. Forest Ecol Manage 180:175–184CrossRefGoogle Scholar
  156. Oliveras I, Martínez-Vilalta J, Jimenez-Ortiz T, Lledó MJ, Escarré A, Piñol J (2003) Hydraulic properties of Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecol 169:131–141CrossRefGoogle Scholar
  157. Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593PubMedCrossRefGoogle Scholar
  158. Paula S, Ojeda F (2009) Belowground starch consumption after recurrent severe disturbance in three resprouter species of the genus Erica. Botany 87: 253–259CrossRefGoogle Scholar
  159. Peguero-Pina JJ, Alquézar-Alquézar JM, Mayr S, Cochard H, Gil-Pelegrín E (2011a) Embolism induced by winter drought may be critical for the survival of Pinus sylvestris L. near its southern distribution limit. Ann Sci 68:565–574Google Scholar
  160. Peguero-Pina JJ, Morales F, Flexas J, Gil-Pelegrín E, Moya I (2008) Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia 156:1–11PubMedCrossRefGoogle Scholar
  161. Peguero-Pina JJ, Sancho-Knapik D, Cochard H, Barredo G, Villarroya D, Gil-Pelegrín (2011b) Hydraulic traits are associated with the distribution range of two closely related Mediterranean firs, Abies alba Mill. and Abies pinsapo Boiss. Tree Physiol 31:1067–1075PubMedCrossRefGoogle Scholar
  162. Peguero-Pina JJ, Sancho-Knapik D, Morales F, Flexas J, Gil-Pelegrín E (2009) Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Funct Plant Biol 36:453–462CrossRefGoogle Scholar
  163. Peman J, Voltas J, Gil-Pelegrin E (2006) Morphological and functional variability in the root system of Quercus ilex L. subject to confinement: consequences for afforestation. Ann For Sci 63:425–430CrossRefGoogle Scholar
  164. Pickard WF, Melcher PJ (2005) Perspectives on the biophysics of xylem transport. In: Holbrook NM and Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Burlington, San Diego, pp 4–18Google Scholar
  165. Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson TE (2010) The Relationships between xylem safety and hydraulic efficiency in the Cupressaceae: The evolution of pit membrane form and function. Plant Physiol 153:1919–1931PubMedCrossRefGoogle Scholar
  166. Pittermann J, Sperry JS (2003) Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol 23:907–914PubMedCrossRefGoogle Scholar
  167. Pittermann J, Sperry JS (2006) Analysis of freeze-thaw embolism in conifers: the interaction between cavitation pressure and tracheid size. Plant Physiol 140:374–382PubMedCrossRefGoogle Scholar
  168. Pittermann J, Sperry JS, Hacke U, Wheeler JK, Sikkema EH. 2006. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. Am J Bot 93:1265–1273PubMedCrossRefGoogle Scholar
  169. Pockman WT, Sperry JS (1997) Freezing-induced xylem cavitation and the northern limit of Larrea tridentata. Oecologia 109:19–27CrossRefGoogle Scholar
  170. Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299PubMedCrossRefGoogle Scholar
  171. Pratt RB, Ewers FW, Lawson MC, Jacobsen AL, Brediger M, Davis SD (2005) Mechanisms for tolerating freeze-thaw stress of two evergreen chaparral species: Rhus ovata and Malosma laurine (Anacardiaceae). Am J Bot 92:1102–1113PubMedCrossRefGoogle Scholar
  172. Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798PubMedCrossRefGoogle Scholar
  173. Pratt RB, North GB, Jacobsen AL, Ewers FW, Davis SD (2010) Xylem root and shoot hydraulics is linked to life history type in chaparral seedlings. Funct Ecol 24:70–81CrossRefGoogle Scholar
  174. Quero JL, Sterck FJ, Martínez-Vilalta J, Villar R (2011) Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia 166:45–57PubMedCrossRefGoogle Scholar
  175. Raimondo F, Nardini A, Salleo S, Cacciola SA, LoGullo MA. 2010. A tracheomycosis as a tool for studying the impact of stem xylem dysfunction on leaf water status and gas exchange in Citrus aurantium L. Trees 24:327–333CrossRefGoogle Scholar
  176. Richter H, Cruiziat P (2002) A brief history of the study of water movement in the xylem. Online document. Essay 4.1. Available via:
  177. Ryan MG (2011) Tree responses to drought. Tree Physiol 31:237–239PubMedCrossRefGoogle Scholar
  178. Sack L, Holbrook NM (2006). Leaf Hydraulics. Annu. Rev. Plant Biol 57:361–81PubMedCrossRefGoogle Scholar
  179. Sack L; Streeter CM, Holbrook NM (2004) Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol 134:1824–1833PubMedCrossRefGoogle Scholar
  180. Sangsing K, Kasemsap P, Thanisawanyangkura S, Sangkhasila K, Gohet E, Thaler P, Cochard H (2004) Xylem embolism and stomatal regulation in two rubber clones (Hevea brasiliensis Muell. Arg.). Trees-Struct Funct 18:109–114CrossRefGoogle Scholar
  181. Sala A. (2009) Lack of direct evidence for the carbon-starvation hypothesis to explain drought-induced mortality in trees. PNAS 106:E68PubMedCrossRefGoogle Scholar
  182. Salleo S, Lo Gullo MA, De Paoli D, Zippo M (1996) Xylem recovery from cavitation induced embolism in young plants of Laurus nobilis, a possible mechanism. New Phytol 132:47–56CrossRefGoogle Scholar
  183. Salleo S, Lo Gullo MA, Raimondo F, Nardini A (2001) Vulnerability to cavitation of leaf minor veins: any impact on leaf gas exchange? Plant Cell Environ 24:851–859CrossRefGoogle Scholar
  184. Salleo S, Nardini A, Pitt F, Lo Gullo MA (2000) Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.). Plant Cell Environ 23:71–79CrossRefGoogle Scholar
  185. Salleo S, Raimondo F, Trifilo P, Nardini A (2003) Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics? Plant Cell Environ 26:1749–1758CrossRefGoogle Scholar
  186. Salleo S, Trifilo P, Lo Gullo M (2006) Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel). Funct Plant Biol 33:1063–1074CrossRefGoogle Scholar
  187. Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550PubMedCrossRefGoogle Scholar
  188. Shatil-Cohen A, Attia Z, Moshelion M (2011) Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J 67:72–80PubMedCrossRefGoogle Scholar
  189. Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressures in vascular plants. Science 148:339–346PubMedCrossRefGoogle Scholar
  190. Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011) Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156:823–843CrossRefGoogle Scholar
  191. Sperry JS (1995) Limitations on stem water transport and their consequences. In: Gartner BL (ed) Plant stems: Physiology and functional morphology, Academy Press Limited, London, pp 105–124Google Scholar
  192. Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104:13–23CrossRefGoogle Scholar
  193. Sperry JS, Christman MA, Torrez-Ruiz JM, Taneda H, Smith DD (2011) Vulnerability curves by centrifugation: is there an open vessel artifact, and are “r” shaped curves necessarily invalid? Plant Cell Environ 35:601–610PubMedCrossRefGoogle Scholar
  194. Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell and Environ 83:414–417Google Scholar
  195. Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of Northern Utah and Interior Alaska. Ecology 75:1736–1752CrossRefGoogle Scholar
  196. Sperry JS, Saliendra NZ (1994) Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ 17:1233–1241CrossRefGoogle Scholar
  197. Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water-stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol 100:605–613PubMedCrossRefGoogle Scholar
  198. Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ 13:427–436CrossRefGoogle Scholar
  199. Spicer R, Gartner B (1998) Hydraulic properties of Douglas-fir (Pseudotsuga menziesii) branches and branch halves with reference to compression wood. Tree Physiol 18:777–784PubMedCrossRefGoogle Scholar
  200. Spicer R, Gartner B (2002) Compression wood has little impact on the water relations of Douglas-fir (Pseudotsuga menziesii) seedlings despite a large effect on shoot hydraulic properties. New Phytol 154:633–640CrossRefGoogle Scholar
  201. Steudle E (1995) Botany—trees under tension. Nature 378:663–664CrossRefGoogle Scholar
  202. Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plants root. Ann Rev Plant Physiol. Plant Mol Biol 52:847–875CrossRefGoogle Scholar
  203. Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788Google Scholar
  204. Stiller V, Sperry JS (1999) Canny’s compensating pressure theory fails a test. Amer J Bot 86:1082–1086CrossRefGoogle Scholar
  205. Stout DL, Sala A (2003) Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats. Tree Physiol 23:43–50PubMedCrossRefGoogle Scholar
  206. Thapa G, Dey M, Sahoo L, Panda SK (2011) An insight into the drought stress induced alterations in plants. Biol Plantarum 55:603–613CrossRefGoogle Scholar
  207. Tognetti R, Longobucco A, Raschi A (1998) Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytol 139:437–447CrossRefGoogle Scholar
  208. Trifilo P, Nardini A, Lo Gullo MA, Salleo S (2003) Vein cavitation and stomatal behaviour of sunflower (Helianthus annuus) leaves under water limitation. Physiol Plant 119: 409–417CrossRefGoogle Scholar
  209. Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus. Trees-Struct Funct 20:334–339CrossRefGoogle Scholar
  210. Tsuda M, Tyree MT (2000) Hydraulic conductance measured by the high pressure flow meter in crop plants. J Exp Bot 51:823–828PubMedCrossRefGoogle Scholar
  211. Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R (1999) Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiol 120:11–21CrossRefGoogle Scholar
  212. Tyree MT (1997) The cohesion-tension theory of sap ascent: current controversies J Exp Bot 48:1753–1765Google Scholar
  213. Tyree MT, Cochard H (1996) Summer and winter embolism in oaks: impact on water relations. Ann For Sci 53:173-180CrossRefGoogle Scholar
  214. Tyree MT, Cochard H, Cruiziat P, Sinclair B, Ameglio T (1993) Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant Cell Environ 16:879–882CrossRefGoogle Scholar
  215. Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360Google Scholar
  216. Tyree MT, Dixon MA, Thompson RG (1984) Ultrasonic acoustic emissions from the sapwood of Thuja occidentalis measured inside a pressure bomb. Plant Physiol 74:1046–1049PubMedCrossRefGoogle Scholar
  217. Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003) Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiol 132:1439–1447PubMedCrossRefGoogle Scholar
  218. Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytologist, 119:345–360CrossRefGoogle Scholar
  219. Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R (1999) Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiol 120:11–21CrossRefGoogle Scholar
  220. Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Plant Physiol 88:574–580PubMedCrossRefGoogle Scholar
  221. Tyree MT, Sperry JS (1989) Vulnerability of xylem cavitation and embolism. Ann Rev Plant Physol Mol Bio 40:19–38CrossRefGoogle Scholar
  222. Tyree MT, Yang S (1992) Hydraulic conductivity recovery versus water pressure in xylem of Acer saccharum. Plant Physiol 100:669–676PubMedCrossRefGoogle Scholar
  223. Tyree MT, Yang S, Cruiziat P, Sinclair B (1994) Novel methods of measuring hydraulic conductivity of tree root systems and interpretation using AMAIZED. A maize-root dynamic model for water and solute transport. Plant Physiol 104:189–199PubMedGoogle Scholar
  224. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edition. Springer-Verlag, Berlin, GermanyGoogle Scholar
  225. Valladares F, Pearcy RW (1998) The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub. Oecologia 114:1–10CrossRefGoogle Scholar
  226. Valladares F, Vilagrosa A, Penuelas J, Ogaya R, Camarero JJ, Corchera L, Sisó S, Gil-Pelegrín E (2008) Estrés hídrico: ecofisiología y escalas de sequía. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante, 2nd edn. Organismo autónomo de parques nacionales. Ministerio de medio ambiente, Madrid, Spain, pp 165–192Google Scholar
  227. Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195PubMedCrossRefGoogle Scholar
  228. Van den Honert TH (1948) Water transport implants as a catenary process. Discussions of the Faraday Society 3:146–153CrossRefGoogle Scholar
  229. van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH et al. (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524PubMedCrossRefGoogle Scholar
  230. Vilagrosa A (2002). Estrategias de resistencia al déficit hídrico en Pistacia lentiscus L. y Quercus coccifera L. PhD Thesis. Universidad de Alicante, Alicante (Spain)Google Scholar
  231. Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024PubMedCrossRefGoogle Scholar
  232. Vilagrosa A, Morales F, Abadía A, Bellot J, Cochard H, Gil-Pelegrín E (2010) Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environ Exp Bot 69:233–242CrossRefGoogle Scholar
  233. Vilagrosa A, Seva JP, Valcecantos A, Cortina J, Alloza JA, Serrasolses I, Diego V, Abril M, Ferran A, Bellot J, Vallejo VR (1997) Plantaciones para la restauración forestal en la comunidad Valenciana. In: La restauración de la cubierta vegetal en la comunidad Valenciana. V. R. Vallejo (Ed.). Pp: 435–598Google Scholar
  234. Voicu M, Cooke JEK, Zwiazek JJ (2009) Aquaporin gene expression and apoplastic water flow in bur oak (Quercus macrocarpa) leaves in relation to the light response of leaf hydraulic conductance. J Exp Bot 60:4063–4075PubMedCrossRefGoogle Scholar
  235. Weatherley PE (1976) Introduction: water movement through plants. Phil Trans R Soc Lond B series 273:435–444CrossRefGoogle Scholar
  236. Wei C, Tyree MT, Steudle E (1999) direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiol 121:1191–1205PubMedCrossRefGoogle Scholar
  237. Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody rosaceae and other vesselled plants: a basis for a safety vs. Efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812CrossRefGoogle Scholar
  238. Wheeler TD, Stroock AD (2008) The transpiration of water at negative pressures in a synthetic tree. Nature, 455:208–212PubMedCrossRefGoogle Scholar
  239. Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27PubMedCrossRefGoogle Scholar
  240. Williamson L, Ribrioux S, Fitter AH, Leyser MO 2001) Phosphate availability regulates root system architecture in Arabidopsis thaliana. Plant Physiol 126:875–882PubMedCrossRefGoogle Scholar
  241. Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gomory D, Roeckel-Drevet P, Cochard H (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31:1–8CrossRefGoogle Scholar
  242. Yoshimura K (2011) Hydraulic function contributes to the variation in shoot morphology within the crown in Quercus crispula. Tree Physiol 31 774–781PubMedCrossRefGoogle Scholar
  243. Zeppel MJB, Henry D, Adams HD, Anderegg WRL (2011) Mechanistic causes of tree drought mortality: recent results, unresolved questions and future research needs. New Phytol 192:800–803PubMedCrossRefGoogle Scholar
  244. Zimmermann U, Meizer FC, Benkert R, Zhu JJ, Schneider H, Goldstein G, Kuchenbrod E, Haase A (1994) Xylem water transport: is the availabe evidence consistent with the cohesion theory? Plant Cell Environ 17:1169–1181CrossRefGoogle Scholar
  245. Zimmermann U, Schneider H, Wegner LH, Haase A. 2004. Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytologist 162:575–615CrossRefGoogle Scholar
  246. Zufferey V, Cochard H, Ameglio T; Spring JL, Viret, O (2011). Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). J Exp Bot 62:3885–3894PubMedCrossRefGoogle Scholar
  247. Zwieniecki MA, Holbrook NM (1998) Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.) red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.). Plant Cell Environ 21:1173–1180CrossRefGoogle Scholar
  248. Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14:530–534PubMedCrossRefGoogle Scholar
  249. Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Vilagrosa
    • 1
    Email author
  • E. Chirino
    • 1
  • J.J. Peguero-Pina
    • 2
  • T.S. Barigah
    • 3
    • 4
  • H. Cochard
    • 3
    • 4
  • E. Gil-Pelegrín
    • 5
  1. 1.Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM)Unidad Mixta de Investigación Universidad de Alicante-Fundación CEAMAlicanteSpain
  2. 2.Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de BiologiaUniversitat de les Illes Balears, Carretera de ValldemossaBalearsSpain
  3. 3.INRAClermont-FerrandFrance
  4. 4.Clermont UniversitéUniversité Blaise PascalClermont-FerrandFrance
  5. 5.Unidad de Recursos ForestalesCentro de Investigación y Tecnología AgroalimentariaZaragozaSpain

Personalised recommendations