Formica ex Machina: Ant Swarm Foraging from Physical to Virtual and Back Again

  • Joshua P. Hecker
  • Kenneth Letendre
  • Karl Stolleis
  • Daniel Washington
  • Melanie E. Moses
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7461)


Ants use individual memory and pheromone communication to forage efficiently. We implement these strategies as distributed search algorithms in robotic swarms. Swarms of simple robots are robust, scalable and capable of exploring for resources in unmapped environments. We test the ability of individual robots and teams of three robots to collect tags distributed in random and clustered distributions in simulated and real environments. Teams of three real robots that forage based on individual memory without communication collect RFID tags approximately twice as fast as a single robot using the same strategy. Our simulation system mimics the foraging behaviors of the robots and replicates our results. Simulated swarms of 30 and 100 robots collect tags 8 and 22 times faster than teams of three robots. This work demonstrates the feasibility of programming large robot teams for collective tasks such as retrieval of dispersed resources, mapping, and environmental monitoring. It also lays a foundation for evolving collective search algorithms in silico and then implementing those algorithms in machina in robust and scalable robotic swarms.


Swarm Intelligence Real Robot Single Robot Simulated Robot Individual Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailis, P., Nagpal, R., Werfel, J.: Positional communication and private information in honeybee foraging models. Swarm Intelligence, 263–274 (2010)Google Scholar
  2. 2.
    Banerjee, S., Moses, M.: Scale invariance of immune system response rates and times: perspectives on immune system architecture and implications for artificial immune systems. Swarm Intelligence 4(4), 301–318 (2010)CrossRefGoogle Scholar
  3. 3.
    Beverly, B., McLendon, H., et al.: How site fidelity leads to individual differences in the foraging activity of harvester ants. Behavioral Ecology 20(3), 633–638 (2009)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, USA (1999)zbMATHGoogle Scholar
  5. 5.
    Cao, Y., Fukunaga, A., Kahng, A.: Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4(1), 7–27 (1997)CrossRefGoogle Scholar
  6. 6.
    Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., et al.: The dynamics of collective sorting robot-like ants and ant-like robots. In: From Animals to Animats: Proc. of the 1st Int’l Conf. on Simulation of Adaptive Behavior, pp. 356–363 (1991)Google Scholar
  7. 7.
    Dorigo, M., Floreano, D., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. Tech. rep., Technical Report TR/IRIDIA/2011-014, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2011)Google Scholar
  8. 8.
    Dorigo, M., Sahin, E.: Swarm robotics–special issue editorial. Autonomous Robots 17(2-3), 111–113 (2004)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T., et al.: Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots 17(2), 223–245 (2004)CrossRefGoogle Scholar
  10. 10.
    Flanagan, T., Letendre, K., Moses, M.E.: Quantifying the Effect of Colony Size and Food Distribution on Harvester Ant Foraging. PLoS ONE (in review)Google Scholar
  11. 11.
    Flanagan, T., Letendre, K., et al.: How Ants Turn Information into Food. In: Proceedings of the 2011 IEEE Conference on Artificial Life, pp. 178–185 (2011)Google Scholar
  12. 12.
    Gordon, D.: The spatial scale of seed collection by harvester ants. Oecologia 95(4), 479–487 (1993)Google Scholar
  13. 13.
    Hölldobler, B.: Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav. Ecol. and Sociobio. 1(1), 3–44 (1976)CrossRefGoogle Scholar
  14. 14.
    Krieger, M., Billeter, J., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406, 992–995 (2000)CrossRefGoogle Scholar
  15. 15.
    Letendre, K., Moses, M.E.: Ant foraging strategies: Site fidelity and recruitment alone and in combination (in review)Google Scholar
  16. 16.
    Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: A feasible visual emulation of pheromone trails for swarm robots. Swarm Intell., 84–94 (2011)Google Scholar
  17. 17.
    Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end swarm robots. Swarm Intelligence, 424–431 (2011)Google Scholar
  18. 18.
    Mondada, F., Pettinaro, G., Kwee, I., Guignard, A., Gambardella, L., Floreano, D., Nolfi, S., Deneubourg, J., Dorigo, M.: SWARM-BOT: A swarm of autonomous mobile robots with self-assembling capabilities. In: Proc. of the Intl. Workshop on Self-organisation and Evolution of Social Behaviour, pp. 307–312 (2002)Google Scholar
  19. 19.
    Moses, M., Banerjee, S.: Biologically Inspired Design Principles for Scalable, Robust, Adaptive, Decentralized Search and Automated Response (RADAR). In: Proceedings of the 2011 IEEE Conference on Artificial Life, pp. 30–37 (2011)Google Scholar
  20. 20.
    Moses, M.: Metabolic scaling from individuals to societies. Ph.D. thesis, University of New Mexico (2005)Google Scholar
  21. 21.
    Mull, J., MacMahon, J.: Spatial variation in rates of seed removal by harvester ants (Pogonomyrmex occidentalis) in a shrub-steppe ecosystem. Am. Nat. (1997)Google Scholar
  22. 22.
    Nolfi, S., Florin, D.: Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. MIT Press (2000)Google Scholar
  23. 23.
    Parker, L.: Designing control laws for cooperative agent teams. In: IEEE International Conference on Robotics and Automation, pp. 582–587. IEEE (1993)Google Scholar
  24. 24.
    Sharkey, A.: Robots, insects and swarm intelligence. Artificial Intelligence Review 26(4), 255–268 (2006)CrossRefGoogle Scholar
  25. 25.
    Trianni, V., Nolfi, S.: Engineering the Evolution of Self-Organizing Behaviors in Swarm Robotics: A Case Study. Artificial Life 17(3), 183–202 (2011)CrossRefGoogle Scholar
  26. 26.
    Wittlinger, M., Wehner, R., Wolf, H.: The ant odometer: stepping on stilts and stumps. Science 312(5782), 1965 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joshua P. Hecker
    • 1
  • Kenneth Letendre
    • 1
    • 2
  • Karl Stolleis
    • 1
  • Daniel Washington
    • 1
  • Melanie E. Moses
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of BiologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations