Advertisement

Ant-Based Approaches for Solving Autocorrelation Problems

  • Ilias S. Kotsireas
  • Konstantinos E. Parsopoulos
  • Grigoris S. Piperagkas
  • Michael N. Vrahatis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7461)

Abstract

We propose two ant–based formulations for solving autocorrelation problems. The formulations are combined with different ACO variants. Preliminary experiments of the derived approaches are conducted on two hard instances of the problem. Their performance is compared to an efficient Tabu Search algorithm, offering useful conclusions and motivation for further investigation.

Keywords

Candidate Solution Hadamard Matrice Swarm Size Computational Budget Ternary Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  2. 2.
    Chiarandini, M., Kotsireas, I.S., Koukouvinos, C., Paquete, L.: Heuristic algorithms for Hadamard matrices with two circulant cores. Th. Com. Sc. 407, 274–277 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of combinatorial designs. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007)zbMATHGoogle Scholar
  4. 4.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Trans. SMC – Part B 26(1), 29–41 (1996)Google Scholar
  5. 5.
    Fletcher, R.J., Gysin, M., Seberry, J.: Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices. Australas. J. Combin. 23, 75–86 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Golomb, S.W., Gong, G.: Signal design for good correlation. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Stützle, T., Hoos, H.H.: Max–min ant system. Future Generation Computer Systems 16, 889–914 (2000)CrossRefGoogle Scholar
  8. 8.
    Tran, L.C., Wysocki, T.A., Mertins, A., Seberry, J.: Complex Orthogonal Space-Time Processing in Wireless Communications. Springer (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ilias S. Kotsireas
    • 1
  • Konstantinos E. Parsopoulos
    • 2
  • Grigoris S. Piperagkas
    • 2
  • Michael N. Vrahatis
    • 3
  1. 1.Department of Physics and Computer ScienceWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of Computer ScienceUniversity of IoanninaGreece
  3. 3.Department of MathematicsUniversity of PatrasGreece

Personalised recommendations