A Fresh Look at the Validity of Diffusion Equations for Modelling Phosphorescence Imaging of Biological Tissue

  • Chintha C. Handapangoda
  • Malin Premaratne
  • Saeid Nahavandi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7425)

Abstract

Phosphorescence lifetime imaging has become a widely used technique for tomographic oxygen imaging. The conventional model used to characterize photon transport in phosphorescence imaging is two coupled diffusion equations. On the premise that the total energy of excitation and phosphorescence photon flows must be conserved, we derive the diffusion equations in phosphorescence imaging and show that there must be an additional term to account for the transport of phosphorescent photons. This additional term accounts for the transport of phosphorescence photon energy density due to its gradients. The significance of this term in modelling phosphorescence in biological tissue is assessed.

Keywords

Phosphorescence imaging Photon transport theory Diffusion approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apreleva, S.V., Wilson, D.F., Vinogradov, S.A.: Tomographic imaging of oxygen by phosphorescence lifetime. Appl. Opt. 45, 8547–8559 (2006)CrossRefGoogle Scholar
  2. 2.
    Arden, G.B., Sidman, R.L., Arap, W., Schlingemann, R.O.: Spare the rod and spoil the eye. Br. J. Ophthamol. 89, 764–769 (2005)CrossRefGoogle Scholar
  3. 3.
    Pena, F., Ramirez, A.M.: Hypoxia-induced changes in neuronal network properties. Mol. Neurobiol. 32, 251–283 (2005)CrossRefGoogle Scholar
  4. 4.
    Ferriero, D.M.: Medical progress-neonatal brain injury. New Eng. J. Med. 351, 1985–1995 (2004)CrossRefGoogle Scholar
  5. 5.
    Evans, S.M., Koch, C.J.: Prognostic significance of tumor oxygenation in humans. Cancer Lett. 195, 1–16 (2003)CrossRefGoogle Scholar
  6. 6.
    Vanderkooi, J.M., Maniara, G., Green, T.J., Wilson, D.F.: An optical method for measurement of dioxygen concentration based on quenching of phosphorescence. J. Biol. Chem. 262, 5476–5482 (1987)Google Scholar
  7. 7.
    Wilson, D.F., Vinogradov, S.A.: Handbook of Biomedical Fluorescence. Marcel Dekker (2003)Google Scholar
  8. 8.
    Servick-Muraca, E.M., Burch, C.L.: Origin of phosphorescence signals reemitted from tissues. Opt. Lett. 19, 1928–1930 (1994)CrossRefGoogle Scholar
  9. 9.
    Welch, A.J., Gemert, M.J.V.: Optical-Thermal Response of Laser-Irradiated Tissue. Plenum Press, New York (1995)Google Scholar
  10. 10.
    Cheong, W., Prahl, S.A., Welch, A.J.: A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990)CrossRefGoogle Scholar
  11. 11.
    Premaratne, M., Premaratne, E., Lowery, A.J.: The photon transport equation for turbid biological media with spatially varying isotropic refractive index. Opt. Express 13, 389–399 (2005)CrossRefGoogle Scholar
  12. 12.
    Handapangoda, C.C., Premaratne, M., Yeo, L., Friend, J.: Laguerre runge-kutta-fehlberg method for simulating laser pulse propagation in biological tissue. IEEE J. Sel. Top. Quantum Electron. 14, 105–112 (2008)CrossRefGoogle Scholar
  13. 13.
    Peraiah, A.: An Introduction to Radiative Transfer: Methods and Applications in Astrophysics. Cambridge University Press (2002)Google Scholar
  14. 14.
    Khan, T., Thomas, A.: On derivation of the radiative transfer equation and its spherical harmonics approximation for scattering media with spatially varying refractive indices. Technical Report TR2004-12-KT:1-49, Clemson University Mathematical Sciences (2004)Google Scholar
  15. 15.
    Troy, T., Thennadil, S.N.: Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. J. Biomed. Opt. 6, 167–176 (2001)CrossRefGoogle Scholar
  16. 16.
    Hutchinson, C.L., Lakowicz, J.R., Sevick-Muraca, E.M.: Fluorescence lifetime-based sensing in tissues: A computational study. Biophys. J. 68, 1574–1582 (1995)CrossRefGoogle Scholar
  17. 17.
    Dirckx, J.J.J., Kuypers, L.C., Decraemer, W.F.: Refractive index of tissue measured with confocal microscopy. J. Biomed. Opt. 10, 044014 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chintha C. Handapangoda
    • 1
  • Malin Premaratne
    • 2
  • Saeid Nahavandi
    • 1
  1. 1.Centre for Intelligent Systems ResearchDeakin UniversityGeelongAustralia
  2. 2.Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems EngineeringMonash UniversityClaytonAustralia

Personalised recommendations