Algorithmic Randomness and Ramsey Properties of Countable Homogeneous Structures

  • Willem L. Fouché
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7456)

Abstract

We study, in the context of algorithmic randomness, the closed amenable subgroups of the symmetric group S ∞  of a countable set. In this paper we investigate a link between the symmetries associated with Ramsey Fraïssé order classes and algorithmic randomness.

Mathematics Subject Classification (2000): 03C20, 03C57, 03D80, 05D10, 06D07, 20B27, 68Q30.

Keywords

Martin-Löf randomness topological dynamics amenable groups Fraïssé limits Ramsey theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity, Theory and Applications of Computability. Springer (2010)Google Scholar
  2. 2.
    Ellis, R.: Universal minimal sets. Proc. Amer. Math. Soc. 11, 272–281 (1949)Google Scholar
  3. 3.
    Fouché, W.L.: Symmetry and the Ramsey degree of posets. Discrete Math. 167/168, 309–315 (1997)CrossRefGoogle Scholar
  4. 4.
    Fouché, W.L., Potgieter, P.H.: Kolmogorov complexity and symmetrical relational structures. J. Symbolic Logic 63, 1083–1094 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Fouché, W.L.: Martin-Löf randomness, invariant measures and countable homogeneous structures. Theory of Computing Systems (to appear), arXiv:1205:0386v1Google Scholar
  6. 6.
    Glasner, E., Weiss, B.: Minimal actions of the group S(ℤ) of permutations of the integers. Geometric and Functional Analysis 5, 964–988 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hodges, W.: A shorter model theory. Cambridge University Press (1993)Google Scholar
  8. 8.
    Hrushovski, E.: Extending partial isomorphisms of graphs. Combinatorica 12, 411–416 (1992)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kechris, A.S.: The dynamics of automorphism groups of homogeneous structures. Lecture at LMS Northern Regional Meeting (July 2011)Google Scholar
  10. 10.
    Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geometric And Functional Analysis 15, 106–189 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kechris, A.S., Rosendal, C.: Turbulence, amalgamation and generic automorphisms of homogeneous structures. Proc. London Math. Soc. 94(3), 302–350 (2007)MathSciNetMATHGoogle Scholar
  12. 12.
    Kechris, A.S., Sokič, M.: Dynamical properties of the automorphism groups of the random poset and random distributive lattice (2011), http://www.math.caltech.edu/people/kechris.html
  13. 13.
    Petrov, F., Vershik, A.: Uncountable graphs and invariant means on the set of universal countable graphs. Random Structures and Algorithms 126, 389–405 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Willem L. Fouché
    • 1
  1. 1.Department of Decision Sciences, School of Economical SciencesUniversity of South AfricaPretoriaSouth Africa

Personalised recommendations