Moving Arrows and Four Model Checking Results

  • Carlos Areces
  • Raul Fervari
  • Guillaume Hoffmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7456)

Abstract

We study dynamic modal operators that can change the model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to swap, delete or add pairs of related elements of the domain, while traversing an edge of the accessibility relation. We study these languages together with the sabotage modal logic, which can arbitrarily delete edges of the model. We define a suitable notion of bisimulation for the basic modal logic extended with each of the new dynamic operators and investigate their expressive power, showing that they are all uncomparable. We also show that the complexity of their model checking problems is PSpace-complete.

Keywords

Model Check Modal Logic Dynamic Operator Expressive Power Accessibility Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory logics. Review of Symbolic Logic 4(2), 290–318 (2011)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)Google Scholar
  3. 3.
    Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and Information 4, 251–272 (1995)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics. Elsevier (2006)Google Scholar
  5. 5.
    Gerbrandy, J.: Bisimulations on Planet Kripke. Ph.D. thesis, University of Amsterdam. ILLC Dissertation series DS-1999-01 (1999)Google Scholar
  6. 6.
    Löding, C., Rohde, P.: Model Checking and Satisfiability for Sabotage Modal Logic. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 302–313. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Löding, C., Rohde, P.: Solving the Sabotage Game Is PSPACE-Hard. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 531–540. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  9. 9.
    Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Rohde, P.: On games and logics over dynamically changing structures. Ph.D. thesis, RWTH Aachen (2006)Google Scholar
  11. 11.
    van Benthem, J.: Logics for information update. In: TARK 2001: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 51–67. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  12. 12.
    van Benthem, J.: An Essay on Sabotage and Obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Kluwer (2007)Google Scholar
  14. 14.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) STOC, pp. 137–146. ACM (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carlos Areces
    • 1
    • 2
  • Raul Fervari
    • 1
  • Guillaume Hoffmann
    • 1
  1. 1.FaMAF, Universidad Nacional de CórdobaArgentina
  2. 2.CONICETArgentina

Personalised recommendations