Visual Analysis of Lightning Data Using Space–Time-Cube

  • Stefan PetersEmail author
  • Hans-Dieter Betz
  • Liqiu Meng
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


This paper describes a framework for a visual analysis of lightning data described by 3D coordinates and the precise occurrence time. First lightning cells are detected and tracked. After that we developed a GUI (interactive graphic user interface) in order to enable the visual exploration of movement patterns and other characteristics of lightning cells. In particular we present different visual concepts for the dynamic lightning cells and tracks within a Space–Time-Cube and a 3D view. Furthermore a statistical analysis is presented. The developed GUI which aims to support decision making includes the visual and statistical representation of cell features as centroid, extension, density, size etc., within a specific temporal and spatial range of interest.


Lightning cells Visual analysis/analytics Space–time-cube Clustering 



The authors gratefully acknowledge Nowcast Company for providing lightning test dataset and the support of the Graduate Center Civil Geo and Environmental Engineering at Technische Universität München, Germany.


  1. Andrienko G, Andrienko N, Dykes J, Fabrikant SI, Wachowicz M (2008) Geovisualization of dynamics, movement and change: key issues and developing approaches in visualization research. Inf Vis 7(3–4):173–180CrossRefGoogle Scholar
  2. Betz HD, Schmidt K, Oettinger WP, Montag B (2008) Cell-tracking with lightning data from LINET. Adv Geosci 17:55–61CrossRefGoogle Scholar
  3. Betz HD, Schmidt K, Oettinger WP (2009) LINET—an international VLF/LF lightning detection network in Europe. In: Betz HD, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, Dordrecht, pp 115–140Google Scholar
  4. Bonelli P, Marcacci P (2008) Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy. Nat Hazards Earth Syst Sci 8(5):1187–1198CrossRefGoogle Scholar
  5. Dixon M, Wiener G (1993) TITAN: thunderstorm identification, tracking, analysis, and nowcasting-A radar-based methodology. J Atmos Ocean Technol 10(6):785–797CrossRefGoogle Scholar
  6. Galton A (2005) Dynamic collectives and their collective dynamics. In: Cohn AG, Mark DM (eds) Spatial information theory. Springer, Berlin, pp 300–315CrossRefGoogle Scholar
  7. Han J, Kamber M (2006) Data mining: concepts and techniques. Morgan Kaufmann, San FranciscoGoogle Scholar
  8. Handwerker J (2002) Cell tracking with TRACE3D—a new algorithm. Atmos Res 61(1):15–34CrossRefGoogle Scholar
  9. Hering A, Morel C, Galli G, Sénési S, Ambrosetti P, Boscacci M (2004) Nowcasting thunderstorms in the Alpine region using a radar based adaptive thresholding scheme. In: Proceedings of ERADGoogle Scholar
  10. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle RiverGoogle Scholar
  11. Johnson J, MacKeen PL, Witt A, Mitchell EDW, Stumpf GJ, Eilts MD, Thomas KW (1998) The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm. Weather Forecast 13(2):263–276CrossRefGoogle Scholar
  12. Kraak MJ (2003) The space–time cube revisited from a geovisualization perspective. In: Proceedings of 21st international cartographic conference, pp 1988–1996Google Scholar
  13. Krisp J, Peters S (2010) Visualizing dynamic 3D densities: a Lava-lamp approach. In: 13th AGILE international conference on geographic information scienceGoogle Scholar
  14. Krisp JM, Peters S, Murphy CE, Fan H (2009) Visual bandwidth selection for kernel density maps. Photogrammetrie Fernerkundung Geoinf 5:445–454CrossRefGoogle Scholar
  15. Krisp J, Peters S, Burkert F, Butenuth M (2010) Visual identification of scattered crowd movement patterns using a directed kernel density estimation. In: SPM2010 mobile TartuGoogle Scholar
  16. Krisp JM, Peters S, Polous K, Fan H, Meng L (2012) Getting in and out of a taxi: spatio-temporal hotspot analysis for floating taxi data in Shanghai. In: Networks for mobility 2012, StuttgartGoogle Scholar
  17. Li L, Schmid W, Joss J (1995) Nowcasting of motion and growth of precipitation with radar over a complex orography. J Appl Meteorol 34(6):1286–1300CrossRefGoogle Scholar
  18. MacEachren AM, Kraak MJ (2001) Research challenges in geovisualization. Cartogr Geogr Inf Sci 28(1):3–12CrossRefGoogle Scholar
  19. Mackaness WA, Ruas A, Sarjakoski LT (2007) Generalisation of geographic information: cartographic modelling and applications. Elsevier Science, Amsterdam, p 386Google Scholar
  20. Meyer V (2010) Thunderstorm tracking and monitoring on the basis of three-dimensional lightning data and conventional and polarimetric radar data. In: DLR, Deutsches Zentrum für Luft- und Raumfahrt. p 128Google Scholar
  21. Peters S, Krisp JM (2010) Density calculation for moving points. In: 13th AGILE international conference on geographic information scienceGoogle Scholar
  22. Peters S, Meng L, Betz HD (2013) Analytics approach for lightning data analysis and cell nowcasting. In: EGU general assembly conference abstracts, pp 32–33Google Scholar
  23. Steinacker R, Dorninger M, Wölfelmaier F, Krennert T (2000) Automatic tracking of convective cells and cell complexes from lightning and radar data. Meteorol Atmos Phys 72(2):101–110CrossRefGoogle Scholar
  24. Virrantaus K, Fairbairn D, Kraak M-J (2009) ICA research agenda on cartography and GI science. Cartogr J 46(2):63–75CrossRefGoogle Scholar
  25. Zinner T, Mannstein H, Tafferner A (2008) Cb-TRAM: tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteorol Atmos Phys 101(3):191–210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Technical University MunichDepartment of CartographyMunichGermany
  2. 2.nowcast GmbHMunichGermany

Personalised recommendations