Advertisement

Visualization of Trajectory Attributes in Space–Time Cube and Trajectory Wall

  • Gennady AndrienkoEmail author
  • Natalia Andrienko
  • Heidrun Schumann
  • Christian Tominski
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Space–time cube is often used as a visualization technique representing trajectories of moving objects in (geographic) space and time by three display dimensions (Hägerstrand 1970). Despite the recent advances allowing space–time cube visualization of clusters of trajectories, it is problematic to represent trajectory attributes. We propose a new time transformation—sequential ordering—that transforms the space–time cube into a new display, trajectory wall, which allows effective and efficient visualization of trajectory attributes for trajectories following similar routes. To enable temporal analysis regarding temporal cycles, we use a time lens technique for interactive visualization. We demonstrate the work of the method on a real data set with trajectories of cars in a big city.

Keywords

Movement data Trajectories Space–time cube Trajectory wall 

References

  1. Andrienko N, Andrienko G (2006) Exploratory analysis of spatial and temporal data. A systematic approach. Springer, BerlinGoogle Scholar
  2. Andrienko N, Andrienko G (2013) Visual analytics of movement: an overview of methods, tools, and procedures. Inf Vis 12(1):3–24CrossRefGoogle Scholar
  3. Andrienko N, Andrienko G, Gatalsky P (2003). Visual data exploration using space–time cube. In: Proceedings of the 21st international cartographic conference, International Cartographic Association, Durban, 10–16 Aug 2003, pp 1981–1983Google Scholar
  4. Andrienko G, Andrienko N, Wrobel S (2007) Visual analytics tools for analysis of movement data. ACM SIGKDD Explor 9(2):38–46CrossRefGoogle Scholar
  5. Andrienko G, Andrienko N (2010) Dynamic Time Transformation for Interpreting Clusters of Trajectories with Space-Time Cube. IEEE Visual Analytics Science and Technology (VAST 2010) Proceedings, IEEE Computer Society Press, pp 213–214Google Scholar
  6. Andrienko G, Andrienko N (2011) Dynamic Time Transformations for Visualizing Multiple Trajectories in Interactive Space-Time Cube. International Cartographic Conference (ICC 2011) Proceedings Google Scholar
  7. Andrienko G, Andrienko N, Bak P, Keim D, Wrobel S (2013) Visual analytics of movement. Springer, HeidelbergGoogle Scholar
  8. Hägerstrand T (1970) What about people in regional science? Paper Reg Sci Assoc 24:7–21CrossRefGoogle Scholar
  9. Harrower M, Brewer CA (2003) Colorbrewer.org: an online tool for selecting colour schemes for maps. Cartogr J 40(1):27–37CrossRefGoogle Scholar
  10. Kapler T, Wright W (2005) GeoTime information visualization. Inf Vis 4(2):136–146CrossRefGoogle Scholar
  11. Kraak M-J (2003) The space–time cube revisited from a geovisualization perspective. In: Proceedings of the 21st international cartographic conference, International Cartographic Association, Durban, 10–16 Aug 2003, pp 1988–1995Google Scholar
  12. Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G (2008) Visually-driven analysis of movement data by progressive clustering. Inf Vis 7(3/4):225–239CrossRefGoogle Scholar
  13. Schreck T, Bernard J, Tekusova T, Kohlhammer J (2008) Visual cluster analysis in trajectory data using editable Kohonen maps. In: Proceedings IEEE symposium on visual analytics science and technology (VAST 2008), IEEE, pp 3–10Google Scholar
  14. Slocum TA, MacMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualization, 3rd edn. Pearson Education, Upper Saddle RiverGoogle Scholar
  15. Tominski C, Schumann H, Andrienko G, Andrienko N (2012) Stacking-based visualization of trajectory attribute data. IEEE Trans Vis Comput Graph (Proc IEEE Inf Vis 2012) 18(12):2565–2574CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gennady Andrienko
    • 1
    Email author
  • Natalia Andrienko
    • 1
  • Heidrun Schumann
    • 2
  • Christian Tominski
    • 2
  1. 1.Fraunhofer IAISSchloss BirlinghovenSankt AugustinGermany
  2. 2.University of RostockRostockGermany

Personalised recommendations