Software Service Selection by Multi-level Matching and Reinforcement Learning

  • Rajeev R. Raje
  • Snehasis Mukhopadhyay
  • Sucheta Phatak
  • Rashmi Shastri
  • Lahiru S. Gallege
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 87)


The software realization of distributed systems is typically achieved as loose coalitions of independently created services. The selection of such services, to act as building blocks of a distributed system, is a critical task that requires discovery and matching activities. This selection task is generally based on simple matching techniques and without any notion of customization. This paper presents a method to achieve the service discovery process using the principles of multilevel matching based on multi-level specifications and customization based on reinforcement learning techniques. In this method, services are selected dynamically using an on-line performance-based reinforcement feedback. In contrast to methods which require the services to actually carry out a task before being selected, in the method proposed in this paper, service selection is carried out using only specification matching, thereby eliminating a large amount of redundant computation. Experimental results are presented in the context of a information classification system. These experiments demonstrate that a high degree of performance can be achieved at a much reduced computational cost using only multi-level specification-matching based reinforcement feedback signals.


software services multi-level specifications discovery classification reinforcement learning acquaintances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sun Microsystems. Jini Specifications V2.0,
  2. 2.
    UPnP Organization. UPnP Home Page (2005),
  3. 3.
    Kemp, J., St. Pierre, P.: Service Location Protocol for Enterprise Networks. Wiley and Son Inc., ISBN 0-47-3158-7Google Scholar
  4. 4.
    OpenSLP Organization. OpenSLP Home Page (2005),
  5. 5.
  6. 6.
    Object Management Group. Trading Object Service Specification (2000),
  7. 7.
    Globus Toolkit (2007),
  8. 8.
    von Behren, J., Brewer, E., Borisov, N., Chen, M., Welsh, M., MacDonald, J., Lau, J., Culler, D.N.: A Framework for Network Services. In: Proceedings of USENIX Annual Technical Conference (2002)Google Scholar
  9. 9.
    Banaei-Kashani, F., Chen, C., Shahabi, C.: WSPDS: Web Services Peer-to-peer Discovery Service (2004),
  10. 10.
    Dabrowski, C., Mills, K., Quirolgico, S.: A Model-based Analysis of First-Generation Service Discovery Systems. Technical report, NIST Special Publication, 500-260 (October 2005),
  11. 11.
    Thathachar, M., Sastry, P.: A New Approach to the Design of Reinforcement Schemes for Learning Automata. IEEE Transactions on System Man Cybernetics 15, 168–175 (1985)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mukhopadhyay, S., Peng, S., Raje, R., Palakal, M., Mostafa, J.: Multi-Agent Information Classification Using Dynamic Acquaintance Lists. Journal of the American Society for Information Science and Technology 54(10), 966–975 (2003)CrossRefGoogle Scholar
  13. 13.
    Seacord, R., Hissam, S. and Wallnau, K. Agora: A Search Engine for Software Components. Technical report, Carnegie Mellon University, CMU/SEI-98-TR-011, ESC-TR-98-011 (1998)Google Scholar
  14. 14.
    Chakraborty, D., Perich, F., Avancha, S., Joshi, A.: DReggie: A Smart Service Discovery Technique for E-Commerce Applications. In: Proceedings, 20th Symposium on Reliable Distributed Systems (October 2001)Google Scholar
  15. 15.
    Di Martino, B.: Semantic web services discovery based on structural ontology matching. In: Proceedings of IJWGS (2009)Google Scholar
  16. 16.
    Lin, C., Wu, Z., Deng, S., Kuang, L.: Automatic Service Matching and Service Discovery Based on Ontology. In: Jin, H., Pan, Y., Xiao, N., Sun, J. (eds.) GCC 2004. LNCS, vol. 3252, pp. 99–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Paolucci, M., Kawamura, T., Payne, T., and Sycara, K. Importing the Semantic Web in UDDI. In: Workshop on EBusiness and Semantic Web (2001)Google Scholar
  18. 18.
    Kawamura, T., De Blasio, J.-A., Hasegawa, T., Paolucci, M., Sycara, K.: Preliminary Report of Public Experiment of Semantic Service Matchmaker with UDDI Business Registry. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 208–224. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Colgrave, J., Akkiraju, R., Goodwin, R.: External Matching in UDDI. In: Proceedings of IEEE international Conference on Web Services (2004)Google Scholar
  21. 21.
    Aguilera, U., Abaitua, J., Diaz, J., Bujan, D., Ipina, D.: Semantic Matching Algorithm for Discovery in UDDI. In: Proceedings of International Conference on Semantic Computing (2007)Google Scholar
  22. 22.
    DARPA. The DARPA Agent Markup Language (2006),
  23. 23.
    Arabshian, K., Schulzrinne, H.: GloServ: global service discovery architecture. In: Mobile and Ubiquitous Systems: Networking and Services, pp. 319–325 (2004)Google Scholar
  24. 24.
    Skouteli, C., Samaras, G., Pitoura, E.: Concept-based discovery of mobile services. In: MDM 2005: Proceedings of the 6th International Conference on Mobile Data Management, pp. 257–261. ACM, New York (2005)Google Scholar
  25. 25.
    Gu, T., Qian, H., Yao, J., Pung, H.: An architecture for flexible service discovery in OCTOPUS. In: ICCCN, pp. 291–296 (2003)Google Scholar
  26. 26.
    Arabshian, K., Dickmann, C., Schulzrinne, H.: Ontology-Based Service Discovery Front-End Interface for GloServ. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 684–696. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Taekgyeong, H., Kwang, M.: An Ontology-enhanced Cloud Service Discovery System. In: Proceedings of International Multiconference of Engineers and Computer Scientists (2010)Google Scholar
  28. 28.
    Zeng, W., Zhao, Y., Zeng, J.: Cloud service and service selection algorithm research. In: Proceedings of ACM/SIGEVO Summit on Genetic and Evolutionary Computation (2009)Google Scholar
  29. 29.
    Rajiv, R., Liang, Z., Xiaomin, W., Anna, L.: Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing. In: Proceedings of CoR (2009)Google Scholar
  30. 30.
    Indiana University Purdue University Indianapolis. UniFrame Project (2010),
  31. 31.
    Beugnard, A., Jezequel, J., Plouzeau, N., Watkins, D.: Making Components Contract Aware. IEEE Computer 32(7), 38–45 (1999)CrossRefGoogle Scholar
  32. 32.
    Siram, N.: An Architecture for the UniFrame Resource Discovery Service. Master’s thesis, Indiana University Purdue University Indianapolis, Department of Computer and Information Science (2002)Google Scholar
  33. 33.
    Siram, N., Raje, R., Bryant, B., Olson, A., Auguston, M., Burt, C.: An Architecture for the UniFrame Resource Discovery Service. In: van der Hoek, A., Coen-Porisini, A. (eds.) SEM 2002. LNCS, vol. 2596, pp. 20–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Raje, R., Gandhamaneni, J., Olson, A., Bryant, B.: MURDS: A Mobile-Agent-based Distributed Discovery System. In: Taniar, D. (ed.) Encyclopedia of Mobile Computing and Commerce, Hershey, USA, vol. 1, pp. 207–212 (2007)Google Scholar
  35. 35.
    Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall (1989)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Rajeev R. Raje
    • 1
  • Snehasis Mukhopadhyay
    • 1
  • Sucheta Phatak
    • 1
  • Rashmi Shastri
    • 1
  • Lahiru S. Gallege
    • 1
  1. 1.Indiana University Purdue University IndianapolisIndianapolisUSA

Personalised recommendations