Evolving the Asymmetry of the Prisoner’s Dilemma Game in Adaptive Social Structures

  • João Moreira
  • Jorge M. Pacheco
  • Francisco C. Santos
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 87)


Empirical studies show that most real social networks exhibit both a significant average connectivity and marked heterogeneity. While the first precludes the emergence of cooperation in static networks, it has been recently shown that the latter induces a symmetry breaking of the game, as cooperative acts become dependent on the social context of the individual. Here we show how adaptive networks can give rise to such diversity in social contexts, creating sufficient conditions for cooperation to prevail as a result of a positive assortment of strategies and the emergence of a symmetry breaking of the game. We further show that realistic heterogeneous networks of high average connectivity where cooperation prevails can result from a simple topological dynamics.


Evolution of Cooperation Evolutionary Game Theory Distributed Prisoner’s Dilemma Dynamic Networks Evolutionary Dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maynard Smith, J., Szathmáry, E.: The Major Transitions in Evolution. W. H. Freeman, Oxford (1995)Google Scholar
  2. 2.
    Sigmund, K.: The Calculus of Selfishness. Princeton University Press (2010)Google Scholar
  3. 3.
    Zimmermann, M.G., Eguíluz, V.M.: Cooperation, social networks, and the emergence of leadership in a prisoner’s dilemma with adaptive local interactions. Phys Review E 72 (2005)Google Scholar
  4. 4.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)CrossRefGoogle Scholar
  5. 5.
    Nowak, M.A., May, R.M.: Evolutionary Games and Spatial Chaos. Nature 359, 826–829 (1992)CrossRefGoogle Scholar
  6. 6.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. U S A 103, 3490–3494 (2006)CrossRefGoogle Scholar
  7. 7.
    Ebel, H., Bornholdt, S.: Coevolutionary games on networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 056118 (2002)Google Scholar
  8. 8.
    Szabó, G., Fáth, G.: Evolutionary games on graphs. Physics Reports 446, 97–216 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Szabó, G., Tőke, C.: Evolutionary prisoner’s dilemma game on a square lattice. Physical Review E 58, 69–73 (1998)CrossRefGoogle Scholar
  10. 10.
    Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 098104 (2005)Google Scholar
  11. 11.
    Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 213–216 (2008)CrossRefGoogle Scholar
  12. 12.
    Gómez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical Organization of Cooperation in Complex Topologies. Phys. Rev. Lett. 98, 108103 (2007)CrossRefGoogle Scholar
  13. 13.
    Masuda, N.: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation. Proc. Biol. Sci. 274, 1815–1821 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Watts, D.J.: Small worlds: The dynamics of networks between order and randomness. Princeton University Press, Princeton (1999)zbMATHGoogle Scholar
  16. 16.
    Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. U S A 97, 11149–11152 (2000)CrossRefGoogle Scholar
  17. 17.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–98 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dorogotsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  19. 19.
    Watts, D.J.: The “new” science of networks. Ann. Rev. Sociobiol. 30, 243–270 (2004)CrossRefGoogle Scholar
  20. 20.
    Pacheco, J.M., Pinheiro, F.L., Santos, F.C.: Population structure induces a symmetry breaking favoring the emergence of cooperation. PLoS Comput. Biol. 5, e1000596 (2009)Google Scholar
  21. 21.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Cooperation prevails when individuals adjust their social ties. PLoS Comput. Biol. 2 e140 (2006)Google Scholar
  22. 22.
    Tanimoto, J.: Promotion of cooperation through co-evolution of networks and strategy in a 2 x 2 game. Physica A 388, 953–960 (2009)CrossRefGoogle Scholar
  23. 23.
    Tanimoto, J.: Dilemma solving by the coevolution of networks and strategy in a 2x2 game. Phys. Review E 76, 021126 (2007)Google Scholar
  24. 24.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving network. Phys. Rev. Lett. 311, 89–90 (2006)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006)CrossRefGoogle Scholar
  26. 26.
    Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Epidemic spreading and cooperation dynamics on homogeneous small-world networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 056128 (2005)Google Scholar
  27. 27.
    Traulsen, A., Nowak, M.A., Pacheco, J.M.: Stochastic dynamics of invasion and fixation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 011909 (2006)Google Scholar
  28. 28.
    Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Graph topology plays a determinant role in the evolution of cooperation. Proc. Biol. Sci. 273, 51–55 (2006)CrossRefGoogle Scholar
  29. 29.
    Pacheco, J.M., Traulsen, A., Nowak, M.A.: Coevolution of strategy and structure in complex networks with dynamical linking. Physical Review Letters 97, 258103 (2006)CrossRefGoogle Scholar
  30. 30.
    Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • João Moreira
    • 1
  • Jorge M. Pacheco
    • 2
    • 1
  • Francisco C. Santos
    • 3
    • 1
  1. 1.ATP-GroupCMAFLisboaPortugal
  2. 2.Departamento de Matemática e AplicaçõesUniversidade do MinhoBragaPortugal
  3. 3.DEI & INESC-ID, Instituto Superior TécnicoTU LisbonLisboaPortugal

Personalised recommendations