Abstract

It has been shown [7,6] that feedforward Boolean networks can learn to perform specific simple tasks and generalize well if only a subset of the learning examples is provided for learning. Here, we extend this body of work and show experimentally that random Boolean networks (RBNs), where both the interconnections and the Boolean transfer functions are chosen at random initially, can be evolved by using a state-topology evolution to solve simple tasks. We measure the learning and generalization performance, investigate the influence of the average node connectivity K, the system size N, and introduce a new measure that allows to better describe the network’s learning and generalization behavior. Our results show that networks with higher average connectivity K (supercritical) achieve higher memorization and partial generalization. However, near critical connectivity, the networks show a higher perfect generalization on the even-odd task.

Keywords

Boolean Function Input Space Mapping Task Boolean Network Learning Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksander, I.: Random logic nets: Stability and adaptation. International Journal of Man-Machine Studies 5, 115–131 (1973)CrossRefGoogle Scholar
  2. 2.
    Aleksander, I.: From Wisard to Magnus: A family of weightless virtual neural machines. In: Austin, J. (ed.) RAM-Based Neural Networks. Progress in Neural Processing, vol. 9. World Scientific (1998)Google Scholar
  3. 3.
    Aleksander, I., Thomas, W.V., Bowden, P.A.: WISARD: A radical step foward in image recognition. Sensor Review 4, 120–124 (1984)CrossRefGoogle Scholar
  4. 4.
    Amari, S.I.: Characteristics of randomly connected threshold-element networks and network systems. Proceedings of the IEEE 59(1), 35–47 (1971)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)MATHGoogle Scholar
  6. 6.
    Carnevali, P., Patarnello, S.: Exhaustive thermodynamical analysis of Boolean learning networks. Europhysics Letters 4(10), 1199–1204 (1987)CrossRefGoogle Scholar
  7. 7.
    Van den Broeck, C., Kawai, R.: Learning in feedforward Boolean networks. Physical Review A 42(10), 6210–6218 (1990)CrossRefGoogle Scholar
  8. 8.
    Gershenson, C.: Classification of random Boolean networks. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Artificial Life VIII. Proceedings of the Eight International Conference on Artificial Life, pp. 1–8. MIT Press, Cambridge, MA (2003)Google Scholar
  9. 9.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly connected genetic nets. Journal of Theoretical Biology 22, 437–467 (1968)CrossRefGoogle Scholar
  10. 10.
    Kauffman, S.A.: Emergent properties in random complex automata. Physica D 10(1-2), 145–156 (1984)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kauffman, S.A.: The Origins of Order: Self–Organization and Selection in Evolution. Oxford University Press, New York (1993)Google Scholar
  12. 12.
    Lawson, J., Wolpert, D.H.: Adaptive programming of unconventional nano-architectures. Journal of Computational and Theoretical Nanoscience 3, 272–279 (2006)Google Scholar
  13. 13.
    Lizier, J., Prokopenko, M., Zomaya, A.: The information dynamics of phase transitions in random boolean networks. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 374–381. MIT Press, Cambridge (2008)Google Scholar
  14. 14.
    Martland, D.: Auto-associative pattern storage using synchronous boolean networks. In: Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, vol. III, pp. 355–366 (1987)Google Scholar
  15. 15.
    Martland, D.: Behaviour of autonomous (synchronous) boolean networks. In: Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, vol. II, pp. 243–250 (1987)Google Scholar
  16. 16.
    Patarnello, A., Carnevali, P.: Learning networks of neurons with Boolean logic. Europhysics Letters 4(4), 503–508 (1987)CrossRefGoogle Scholar
  17. 17.
    Patarnello, S., Carnevali, P.: Learning capabilities of boolean networks. In: Aleksander, I. (ed.) Neural Computing Architectures: The Design of Brain-Like Machines, ch. 7, pp. 117–129. North Oxford Academic, London (1989)Google Scholar
  18. 18.
    Rozonoér, L.I.: Random logical nets I. Automation and Remote Control 5, 773–781 (1969); translation of Avtomatika i TelemekhanikaGoogle Scholar
  19. 19.
    Selfridge, O.G.: “Pandemonium”: A paradigm for learning. In: Mechanisation of Thought Processes: Proceedings of a Symposium Held at the National Physical Laboratory, pp. 513–526 (1958)Google Scholar
  20. 20.
    Selfridge, O.G., Neisser, U.: Pattern recognition by machine. Scientific American 203(2), 60–68 (1960)CrossRefGoogle Scholar
  21. 21.
    Teuscher, C.: Turing’s Connectionism. An Investigation of Neural Network Architectures. Springer, London (2002)MATHGoogle Scholar
  22. 22.
    Teuscher, C., Gulbahce, N., Rohlf, T.: Learning and generalization in random Boolean networks. In: Dynamics Days 2007: International Conference on Chaos and Nonlinear Dynamics, Boston, MA, January 3-6 (2007)Google Scholar
  23. 23.
    Teuscher, C., Gulbahce, N., Rohlf, T.: An assessment of random dynamical network automata for nanoelectronics. International Journal of Nanotechnology and Molecular Computation 1(4), 39–57 (2009)CrossRefGoogle Scholar
  24. 24.
    Tour, J., Van Zandt, W.L., Husband, C.P., Husband, S.M., Wilson, L.S., Franzon, P.D., Nackashi, D.P.: Nanocell logic gates for molecular computing. IEEE Transactions on Nanotechnology 1(2), 100–109 (2002)CrossRefGoogle Scholar
  25. 25.
    Turing, A.M.: Intelligent machinery. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 3–23. Edinburgh University Press, Edinburgh (1969)Google Scholar
  26. 26.
    Weisbuch, G.: Dynamique des systèmes complexes: Une introduction aux réseaux d’automates. InterEditions, France (1989)Google Scholar
  27. 27.
    Weisbuch, G.: Complex Systems Dynamics: An Introduction to Automata Networks. Lecture Notes, Santa Fe Institute, Studies in the Sciences of Complexity, vol. 2. Addison-Wesley, Redwood City (1991)Google Scholar
  28. 28.
    Wittaker, E.T., Robinson, G.: The trapezoidal and parabolic rules. In: The Calculus of Observations: A Treatise on Numerical Mathematics, pp. 156–158. Dover, New York (1969)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Alireza Goudarzi
    • 1
  • Christof Teuscher
    • 2
  • Natali Gulbahce
    • 3
  1. 1.Computer Science and Systems Science DepartmentPortland State University (PSU)PortlandUSA
  2. 2.Department of Electrical and Computer EngineeringPortland State University (PSU)PortlandUSA
  3. 3.Department of Cellular and Molecular PharmacologyUniversity of California, San Francisco (UCSF)USA

Personalised recommendations