Querying Transaction–Time Databases under Branched Schema Evolution

  • Wenyu Huo
  • Vassilis J. Tsotras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7446)

Abstract

Transaction-time databases have been proposed for storing and querying the history of a database. While past work concentrated on managing the data evolution assuming a static schema, recent research has considered data changes under a linearly evolving schema. An ordered sequence of schema versions is maintained and the database can restore/query its data under the appropriate past schema. There are however many applications leading to a branched schema evolution where data can evolve in parallel, under different concurrent schemas. In this work, we consider the issues involved in managing the history of a database that follows a branched schema evolution. To maintain easy access to any past schema, we use an XML-based approach with an optimized sharing strategy. As for accessing the data, we explore branched temporal indexing techniques and present efficient algorithms for evaluating two important queries made possible by our novel branching environment: the vertical historical query and the horizontal historical query. Moreover, we show that our methods can support branched schema evolution which allows version merging. Experimental evaluations show the efficiency of our storing, indexing, and query processing methodologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optimal multiversion b-tree. VLDB Journal (1996)Google Scholar
  3. 3.
    Bercken, J., Seeger, B.: Query Processing Techniques for Multiversion Access Methods. In: VLDB 1996 (1996)Google Scholar
  4. 4.
    Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful Database Schema Evolution. In: VLDB (2008)Google Scholar
  5. 5.
    Curino, C.A., Moon, H.J., Zaniolo, C.: Managing the history of metadata in support for db archiving and schema evolution. In: ECDM (2008)Google Scholar
  6. 6.
    Jiang, L., Salzberg, B., Lomet, D., Barrena, M.: The BT-Tree: A branched and temporal access method. In: VLDB (2000)Google Scholar
  7. 7.
    Landau, G.M., Schmidt, J.P., Tsotras, V.J.: Historical Queries along Multiple Lines of Time Evolution. VLDB Journal (1995)Google Scholar
  8. 8.
    Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.-Y., Zaniolo, C.: Managing and Querying Transaction-time Databases under Schema Evolution. In: VLDB (2008)Google Scholar
  9. 9.
    Moon, H.J., Curino, C.A., Zaniolo, C.: Scalable Architecture and Query Optimization for Transaction-time DBs with Evolving Schemas. In: SIGMOD (2010)Google Scholar
  10. 10.
    Salzberg, B., Jiang, L., Lomet, D., Barrena, M., Shan, J., Kanoulas, E.: A Framework for Access Methods for Versioned Data. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 730–747. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Tsotras, V.J., Jensen, C.S., Snodgrass, R.T.: An Extensible Notation for Spatiotemporal Index Queries. SIGMOD Record 27(1) (1998)Google Scholar
  12. 12.
    Wang, F., Zaniolo, C., Zhou, X.: Archis: An xml-based approach to transaction-time temporal database systems. VLDB Journal (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wenyu Huo
    • 1
  • Vassilis J. Tsotras
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations