Incremental Computation of Skyline Queries with Dynamic Preferences

  • Tassadit Bouadi
  • Marie-Odile Cordier
  • René Quiniou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7446)

Abstract

Skyline queries retrieve the most interesting objects from a database with respect to multi-dimensional preferences. Identifying and extracting the relevant data corresponding to multiple criteria provided by users remains a difficult task, especially when the data are large. In 2008-2009, Wong et al. showed how to avoid costly skyline query computations by deriving the skyline points associated with any preference from the skyline points associated with the most preferred values. They propose to materialize these points in a structure called IPO-tree (Implicit Preference Order Tree). However, its size is exponential with respect to the number of dimensions. We propose an incremental method for calculating the skyline points related to several dimensions associated with dynamic preferences. For this purpose, a materialization of linear size which allows a great flexibility for dimension preference updates is defined. This contribution improves notably the computation cost of queries. Experiments on synthetic data highlight the relevance of EC2Sky compared to IPO-Tree.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)MATHGoogle Scholar
  2. 2.
    Raïssi, C., Pei, J., Kister, T.: Computing closed skycubes. PVLDB 3(1), 838–847 (2010)Google Scholar
  3. 3.
    Wong, R.C.W., Fu, A.W.C., Pei, J., Ho, Y.S., Wong, T., Liu, Y.: Efficient skyline querying with variable user preferences on nominal attributes. PVLDB 1(1), 1032–1043 (2008)Google Scholar
  4. 4.
    Wong, R.C.W., Pei, J., Fu, A.W.C., Wang, K.: Online skyline analysis with dynamic preferences on nominal attributes. IEEE Trans. Knowl. Data Eng. 21(1), 35–49 (2009)CrossRefGoogle Scholar
  5. 5.
    Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation of the skyline cube. In: VLDB, pp. 241–252 (2005)Google Scholar
  6. 6.
    Tao, Y., Xiao, X., Pei, J.: Efficient skyline and top-k retrieval in subspaces. IEEE Trans. on Knowl. and Data Eng., 1072–1088 (2008)Google Scholar
  7. 7.
    Huang, Z., Guo, J., Sun, S., Wang, W.: Efficient optimization of multiple subspace skyline queries. J. Comput. Sci. Technol, 103–111 (2008)Google Scholar
  8. 8.
    Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of the 17th ICDE, pp. 421–430. IEEE Computer Society (2001)Google Scholar
  9. 9.
    Mindolin, D., Chomicki, J.: Preference elicitation in prioritized skyline queries. VLDB J 20(2), 157–182 (2011)CrossRefGoogle Scholar
  10. 10.
    Brando, C., Goncalves, M., González, V.: Evaluating Top-k Skyline Queries over Relational Databases. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 254–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Bouadi, T., Bringay, S., Poncelet, P., Teisseire, M.: Requêtes skyline avec prise en compte des préférences utilisateurs pour des données volumineuses. In: EGC 2010, pp. 399–404 (2010)Google Scholar
  12. 12.
    Balke, W., Guntzer, U., Siberski, W.: Exploiting indifference for customization of partial order skylines. In: Proc. of the 10th IDEAS, pp. 80–88. IEEE Computer Society (2006)Google Scholar
  13. 13.
    Trenkler, G.: Univariate discrete distributions : N.L. Johnson, S. Kotz and A.W. Kemp: 2nd edn. John Wiley, New York (1992) ISBN 0-471-54897-9; Computational Statistics & Data Analysis, 240–241 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tassadit Bouadi
    • 1
  • Marie-Odile Cordier
    • 1
  • René Quiniou
    • 2
  1. 1.IRISA - University of Rennes 1France
  2. 2.IRISA - INRIA RennesRennesFrance

Personalised recommendations