Automated Extraction of Semantic Concepts from Semi-structured Data: Supporting Computer-Based Education through the Analysis of Lecture Notes

  • Thushari Atapattu
  • Katrina Falkner
  • Nickolas Falkner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7446)


Computer-based educational approaches provide valuable supplementary support to traditional classrooms. Among these approaches, intelligent learning systems provide automated questions, answers, feedback, and the recommendation of further resources. The most difficult task in intelligent system formation is the modelling of domain knowledge, which is traditionally undertaken manually or semi-automatically by knowledge engineers and domain experts. However, this error-prone process is time-consuming and the benefits are confined to an individual discipline. In this paper, we propose an automated solution using lecture notes as our knowledge source to utilise across disciplines. We combine ontology learning and natural language processing techniques to extract concepts and relationships to produce the knowledge representation. We evaluate this approach by comparing the machine-generated vocabularies to terms rated by domain experts, and show a measurable improvement over existing techniques.


ontology POS tagging lecture notes concept extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carbonell, J.R.: AI in CAI: An Artificial-Intelligence Approach to Computer-Assisted Instruction. IEEE Transactions on Man-machine Systems 11(4), 190–202 (1970)CrossRefGoogle Scholar
  2. 2.
    McArthur, D., Stasz, C., Hotta, J., Peter, O., Burdorf, C.: Skill-oriented task sequencing in an intelligent tutor for basic algebra. RAND Note 17(4), 281–307 (1988)Google Scholar
  3. 3.
    Butz, C.J., Hua, S., Maguire, R.B.: A Web-Based Intelligent Tutoring System for Computer Programming. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 159–165. IEEE Computer Society, USA (2004)CrossRefGoogle Scholar
  4. 4.
    Stankov, S., Rosic, M., Itko, B., Grubisic, A.: TEx-Sys model for building intelligent tutoring systems. Computer and Education 51(3), 1017–1036 (2008)CrossRefGoogle Scholar
  5. 5.
    Zitko, B., Stankov, S., Rosic, M., Grubisic, A.: Dynamic test generation over ontology-based knowledge representation in authoring shell. Expert Systems with Applications 36(4), 8185–8196 (2009)CrossRefGoogle Scholar
  6. 6.
    Zhuge, H., Li, Y.: KGTutor: A Knowledge Grid Based Intelligent Tutoring System. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 473–478. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Issa, R., Arciszewski, T.: Ontology: An Introduction, Teaching Modules (PowerPoint presentation). In: ASCE Global Center of Excellence in Computing (2011)Google Scholar
  8. 8.
    Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In: North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 252–259. Association for Computational Linguistics, Canada (2003)Google Scholar
  9. 9.
    The Stanford NLP (Natural Language Processing) Group,
  10. 10.
    Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)MATHCrossRefGoogle Scholar
  11. 11.
    Hsieh, S., Lin, H., Chi, N., Chou, K., Lin, K.: Enabling the development of base domain ontology through extraction of knowledge from engineering domain handbooks. Advanced Engineering Informatics 25, 288–296 (2011)CrossRefGoogle Scholar
  12. 12.
    Gantayat, N., Iyer, S.: Automated building of domain ontologies from lecture notes in courseware. In: IEEE International Conference on Technology for Education, pp. 89–95. IIT Madras, India (2011)CrossRefGoogle Scholar
  13. 13.
    Ono, M., Harada, F., Shimakawa, H.: Semantic Network to Formalize Learning Items from Lecture Notes. International Journal of Advanced Computer Science 1(1), 10–15 (2011)Google Scholar
  14. 14.
    HaCohen-Kerner, Y., Gross, Z., Masa, A.: Automatic Extraction and Learning of Keyphrases from Scientific Articles. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 657–669. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Rezgui, Y.: Text-based domain ontology building using tf-idf and metric clusters techniques. The Knowledge Engineering Review 22(4), 379–403 (2007)CrossRefGoogle Scholar
  16. 16.
    Chen, N., Kinsuk, Wei, C., Chen, H.: Mining e-Learning Domain Concept Map from Academic Articles. In: Sixth International Conference on Advanced Learning Technologies, pp. 694–698. IEEE Computer Society, Netherlands (2006)CrossRefGoogle Scholar
  17. 17.
    Apache POI- the Java API for Microsoft Documents,
  18. 18.
  19. 19.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer, New York (2006)Google Scholar
  20. 20.
    Understanding the PowerPoint MS-PPT Binary File Format,
  21. 21.
    Hripcsak, G., Rothschild, A.S.: Agreement, the F-measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 12(3), 296–298 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thushari Atapattu
    • 1
  • Katrina Falkner
    • 1
  • Nickolas Falkner
    • 1
  1. 1.School of Computer ScienceUniversity of AdelaideAdelaideAustralia

Personalised recommendations