A Scheme of Fragment-Based Faceted Image Search

  • Takahiro Komamizu
  • Mariko Kamie
  • Kazuhiro Fukui
  • Toshiyuki Amagasa
  • Hiroyuki Kitagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7447)

Abstract

Retrieving desired images from large amounts of images has been increasingly important. Traditionally keyword search and content-based image retrieval have been used for image search. However, such retrieval methods have scarcely assumed a case when users have few terms for desired images or few images similar to the desired images. For this problem, we use fragments of images extracted from datasets as values of facets in faceted navigation. We extract parts of images as fragments. Then, we make a several number of groups for each part to decide representative images for faceted navigation. Our empirical user study based on an example application using face image data, FUKUWARAI, shows that our proposal successfully supports users to find desired images.

Keywords

Faceted Navigation Image Retrieval Faceted Image Search Fragments Fragment-based Faceted Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Comput. Surv. 40(2) (2008)Google Scholar
  3. 3.
    Hare, J.S., Lewis, P.H., Enser, P.G.B., Sandom, C.J.: Semantic Facets: An in-depth Analysis of a Semantic Image Retrieval System. In: CIVR, pp. 250–257 (2007)Google Scholar
  4. 4.
    Kumar, N., Belhumeur, P.N., Nayar, S.K.: FaceTracer: A Search Engine for Large Collections of Images with Faces. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 340–353. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Milborrow, S., Morkel, J., Nicolls, F.: The MUCT Landmarked Face Database. PRASA (2010), http://www.milbo.org/muct
  6. 6.
    Sacco, G.M., Tzitzikas, Y.: Dynamic Taxonomies and Faceted Search. Springer (2009)Google Scholar
  7. 7.
    Stober, S., Hentschel, C., Nürnberger, A.: Multi-facet exploration of image collections with an adaptive multi-focus zoomable interface. In: IJCNN, pp. 1–8. IEEE (2010)Google Scholar
  8. 8.
    Thomaz, C.E., Giraldi, G.A.: A new ranking method for Principal Components Analysis and its application to face image analysis. Image and Vision Computing 28(6), 902–913 (2010)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Tang, X.: Face photo-sketch synthesis and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1955–1967 (2009)CrossRefGoogle Scholar
  10. 10.
    White, R.W., Kules, B., Drucker, S.M., Schraefel, M.: Supporting Exploratory Search. Introduction, CommuSupporting Exploratory Senications of the ACM 49(4), 36–39 (2006)Google Scholar
  11. 11.
    Yee, K.P., Swearingen, K., Li, K., Hearst, M.A.: Faceted Metadata for Image Search and Browsing. In: Proc. CHI, pp. 401–408 (2003)Google Scholar
  12. 12.
    van Zwol, R., Sigurbjörnsson, B., Adapala, R., Pueyo, L.G., Katiyar, A., Kurapati, K., Muralidharan, M., Muthu, S., Murdock, V., Ng, P., Ramani, A., Sahai, A., Sathish, S.T., Vasudev, H., Vuyyuru, U.: Faceted Exploration of Image Search Results. In: Proc. WWW, pp. 961–970 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Takahiro Komamizu
    • 1
  • Mariko Kamie
    • 1
  • Kazuhiro Fukui
    • 2
  • Toshiyuki Amagasa
    • 2
    • 3
  • Hiroyuki Kitagawa
    • 2
  1. 1.Graduate School of SIEUniversity of TsukubaJapan
  2. 2.Faculty of Engineering, Information and SystemsUniversity of TsukubaJapan
  3. 3.Institute of Space and Astronautical ScienceJAXAJapan

Personalised recommendations