Gender Effect of Fatigue on Lower Extremity Kinematics and Kinetics During Athletic Tasks

Chapter

Abstract

This chapter provides an overview of the effects of fatigue on the biomechanics of lower extremity movement. The differences between generalized whole-body central fatigue and isolated muscular peripheral fatigue are described. The epidemiological evidence relative to fatigue and ACL injury occurrence is presented. The effects of different types of fatigue protocols on biomechanical movement patterns are summarized. Gender differences in biomechanical movement patterns under fatigued conditions are presented.

Keywords

Anterior Cruciate Ligament Anterior Cruciate Ligament Injury Vertical Jump Central Fatigue Fatigue Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33(4):524–530PubMedCrossRefGoogle Scholar
  2. 2.
    Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23(6):694–701PubMedCrossRefGoogle Scholar
  3. 3.
    Benjaminse A, Habu A, Sell TC et al (2008) Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthrosc 16(4):400–407PubMedCrossRefGoogle Scholar
  4. 4.
    Boden BP, Dean GS, Feagin JA Jr et al (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  5. 5.
    Borotikar BS, Newcomer R, Koppes R et al (2008) Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech (Bristol, Avon) 23(1):81–92CrossRefGoogle Scholar
  6. 6.
    Bradley JP, Klimkiewicz JJ, Rytel MJ et al (2002) Anterior cruciate ligament injuries in the National Football League: epidemiology and current treatment trends among team physicians. Arthroscopy 18(5):502–509PubMedCrossRefGoogle Scholar
  7. 7.
    Chappell JD, Herman DC, Knight BS et al (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029PubMedCrossRefGoogle Scholar
  8. 8.
    Cortes N, Quammen D, Lucci S et al (2012) A functional agility short-term fatigue protocol changes lower extremity mechanics. J Sports Sci 30(8):797–805PubMedCrossRefGoogle Scholar
  9. 9.
    Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72(5):1631–1648PubMedGoogle Scholar
  10. 10.
    Gandevia SC, Allen GM, Butler JE et al (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490(Pt 2):529–536PubMedGoogle Scholar
  11. 11.
    Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789PubMedGoogle Scholar
  12. 12.
    Gehring D, Melnyk M, Gollhofer A (2009) Gender and fatigue have influence on knee joint control strategies during landing. Clin Biomech (Bristol, Avon) 24(1):82–87CrossRefGoogle Scholar
  13. 13.
    Greig M, Marchant D, Lovell R et al (2007) A continuous mental task decreases the physiological response to soccer-specific intermittent exercise. Br J Sports Med 41(12):908–913PubMedCrossRefGoogle Scholar
  14. 14.
    Greig M (2008) The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med 36(7):1403–1409PubMedCrossRefGoogle Scholar
  15. 15.
    Greig M, Siegler JC (2009) Soccer-specific fatigue and eccentric hamstrings muscle strength. J Athl Train 44(2):180–184PubMedCrossRefGoogle Scholar
  16. 16.
    Griffin LY, Agel J, Albohm MJ et al (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8(3):141–150PubMedGoogle Scholar
  17. 17.
    Hakkinen K, Komi PV (1983) Electromyographic and mechanical characteristics of human skeletal muscle during fatigue under voluntary and reflex conditions. Electroencephalogr Clin Neurophysiol 55(4):436–444PubMedCrossRefGoogle Scholar
  18. 18.
    Hawkins RD, Fuller CW (1999) A prospective epidemiological study of injuries in four English professional football clubs. Br J Sports Med 33(3):196–203PubMedCrossRefGoogle Scholar
  19. 19.
    Hawkins RD, Hulse MA, Wilkinson C et al (2001) The association football medical research programme: an audit of injuries in professional football. Br J Sports Med 35(1):43–47PubMedCrossRefGoogle Scholar
  20. 20.
    Hewett TE, Myer GD, Ford KR et al (2004) Neuromuscular control and valgus loading of the knee predict ACL injury risk in female athletes. Med Sci Sports Exerc 36(5):S287Google Scholar
  21. 21.
    Hewett TE, Myer GD, Ford KR (2006) Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med 34(2):299–311PubMedCrossRefGoogle Scholar
  22. 22.
    Hootman JM, Dick R, Agel J (2007) Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train 42(2):311–319PubMedGoogle Scholar
  23. 23.
    Hughes G, Watkins J (2006) A risk-factor model for anterior cruciate ligament injury. Sports Med 36(5):411–428PubMedCrossRefGoogle Scholar
  24. 24.
    Kernozek TW, Torry MR, Iwasaki M (2008) Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med 36(3):554–565PubMedCrossRefGoogle Scholar
  25. 25.
    Liederbach M, Dilgen FE, Rose DJ (2008) Incidence of anterior cruciate ligament injuries among elite ballet and modern dancers: a 5-year prospective study. Am J Sports Med 36(9):1779–1788PubMedCrossRefGoogle Scholar
  26. 26.
    Lucci S, Cortes N, Van Lunen B et al (2011) Knee and hip sagittal and transverse plane changes after two fatigue protocols. J Sci Med Sport 14(5):453–459PubMedCrossRefGoogle Scholar
  27. 27.
    McLean SG, Huang X, van den Bogert AJ (2005) Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech (Bristol, Avon) 20(8):863–870CrossRefGoogle Scholar
  28. 28.
    McLean SG, Fellin RE, Suedekum N et al (2007) Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc 39(3):502–514PubMedCrossRefGoogle Scholar
  29. 29.
    McLean SG, Samorezov JE (2009) Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc 41(8):1661–1672PubMedGoogle Scholar
  30. 30.
    Mihata LC, Beutler AI, Boden BP (2006) Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med 34(6):899–904PubMedCrossRefGoogle Scholar
  31. 31.
    Mountcastle SB, Posner M, Kragh JF Jr et al (2007) Gender differences in anterior cruciate ligament injury vary with activity: epidemiology of anterior cruciate ligament injuries in a young, athletic population. Am J Sports Med 35(10):1635–1642PubMedCrossRefGoogle Scholar
  32. 32.
    Onate J, Cortes N, Welch C et al (2010) Expert versus novice interrater reliability and criterion validity of the landing error scoring system. J Sport Rehabil 19(1):41–56PubMedGoogle Scholar
  33. 33.
    Ostenberg A, Roos H (2000) Injury risk factors in female European football. A prospective study of 123 players during one season. Scand J Med Sci Sports 10(5):279–285PubMedCrossRefGoogle Scholar
  34. 34.
    Pappas E, Hagins M, Sheikhzadeh A et al (2007) Biomechanical differences between unilateral and bilateral landings from a jump: gender differences. Clin J Sport Med 17(4):263–268PubMedCrossRefGoogle Scholar
  35. 35.
    Pappas E, Sheikhzadeh A, Hagins M et al (2007) The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values. J Sports Sci Med 6(1):77–84Google Scholar
  36. 36.
    Quammen D, Cortes N, Van Lunen BL et al (2012) Two different fatigue protocols and lower extremity motion patterns during a stop-jump task. J Athl Train 47(1):32–41PubMedGoogle Scholar
  37. 37.
    Rozzi SL, Lephart SM, Gear WS et al (1999) Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27(3):312–319PubMedGoogle Scholar
  38. 38.
    Sanna G, O’Connor KM (2008) Fatigue-related changes in stance leg mechanics during sidestep ­cutting maneuvers. Clin Biomech (Bristol, Avon) 23(7):946–954CrossRefGoogle Scholar
  39. 39.
    Thomas AC, McLean SG, Palmieri-Smith RM (2010) Quadriceps and hamstrings fatigue alters hip and knee mechanics. J Appl Biomech 26(2):159–170PubMedGoogle Scholar
  40. 40.
    Thomas AC, Palmieri-Smith RM, McLean SG (2011) Isolated hip and ankle fatigue are unlikely risk factors for anterior cruciate ligament injury. Scand J Med Sci Sports 21(3):359–368PubMedCrossRefGoogle Scholar
  41. 41.
    Uhorchak JM, Scoville CR, Williams GN et al (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842PubMedGoogle Scholar
  42. 42.
    Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24(5):615–621PubMedCrossRefGoogle Scholar
  43. 43.
    Yu B, Garrett WE (2007) Mechanisms of non-contact ACL injuries. Br J Sports Med 41(Suppl 1):i47–i51PubMedCrossRefGoogle Scholar
  44. 44.
    Zebis MK, Bencke J, Andersen LL et al (2011) Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players. Scand J Med Sci Sports 21(6):833–840PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Health and Rehabilitation SciencesOhio State UniversityColumbusUSA
  2. 2.Sports Medicine Assessment, Research & Testing (SMART) LaboratoryGeorge Mason UniversityManassasUSA

Personalised recommendations