Probabilistic Automata and Probabilistic Logic

  • Thomas Weidner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)

Abstract

We present a monadic second-order logic which is extended by an expected value operator and show that this logic is expressively equivalent to probabilistic automata for both finite and infinite words. We give possible syntax extensions and an embedding of our probabilistic logic into weighted MSO logic. We further derive decidability results which are based on corresponding results for probabilistic automata.

Keywords

Probabilistic Logic Acceptance Condition Bernoulli Measure Probabilistic Automaton Weighted Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., Grösser, M.: Recognizing ω-regular languages with probabilistic automata. In: Proc. LICS, pp. 137–146. IEEE (2005)Google Scholar
  2. 2.
    Baier, C., Bertrand, N., Größer, M.: On Decision Problems for Probabilistic Büchi Automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bollig, B., Gastin, P.: Weighted versus Probabilistic Logics. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)MATHCrossRefGoogle Scholar
  5. 5.
    Bukharaev, R.G.: Theorie der stochastischen Automaten. Teubner (1995)Google Scholar
  6. 6.
    Chadha, R., Sistla, A.P., Viswanathan, M.: Power of Randomization in Automata on Infinite Strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 229–243. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic Büchi Automata with Non-extremal Acceptance Thresholds. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 103–117. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic Weighted Automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.: Probabilistic Automata on Infinite Words: Decidability and Undecidability Results. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 1–16. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Tracol, M.: Decidable problems for probabilistic automata on infinite words. CoRR abs/1107.2091 (2011)Google Scholar
  11. 11.
    Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched PIOA: Parallel composition via distributed scheduling. TCS 365(1-2), 83–108 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Computer Science 380(1-2), 69–86 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Droste, M., Kuich, W., Vogler, H., (eds.): Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science. Springer (2009)Google Scholar
  14. 14.
    Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–51 (1961)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gimbert, H., Oualhadj, Y.: Probabilistic Automata on Finite Words: Decidable and Undecidable Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 527–538. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Klenke, A.: Probability Theory: A Comprehensive Course, 1st edn. Universitext. Springer (December 2007)Google Scholar
  17. 17.
    Mora-López, L., Morales, R., Sidrach de Cardona, M., Triguero, F.: Probabilistic finite automata and randomness in nature: a new approach in the modelling and prediction of climatic parameters. In: Proc. International Environmental Modelling and Software Congress, pp. 78–83 (2002)Google Scholar
  18. 18.
    Paz, A.: Introduction to Probabilistic Automata. Computer Science and Applied Mathematics. Academic Press, Inc. (1971)Google Scholar
  19. 19.
    Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)CrossRefGoogle Scholar
  20. 20.
    Ron, D., Singer, Y., Tishby, N.: The power of amnesia: Learning probabilistic automata with variable memory length. Machine Learning 25, 117–149 (1996)MATHCrossRefGoogle Scholar
  21. 21.
    Sakarovitch, J.: Rational and recognisable power series. In: Droste, et al. (eds.) [13] Handbook, pp. 105–174Google Scholar
  22. 22.
    Tracol, M., Baier, C., Größer, M.: Recurrence and transience for probabilistic automata. In: FSTTCS, vol. 4, pp. 395–406. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)Google Scholar
  23. 23.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: Foundations of Computer Science, pp. 327–338 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Weidner
    • 1
  1. 1.Institut für InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations