Descriptional Complexity of Deterministic Regular Expressions
Conference paper
- 6 Citations
- 1.1k Downloads
Abstract
We study the descriptional complexity of regular languages that are definable by deterministic regular expressions. First, we examine possible blow-ups when translating between regular expressions, deterministic regular expressions, and deterministic automata. Then we give an overview of the closure properties of these languages under various language-theoretic operations and we study the descriptional complexity of applying these operations. Our main technical result is a general property that implies that the blow-up when translating a DFA to an equivalent deterministic expression can be exponential.
Keywords
Regular Expression Regular Language Closure Property Descriptional Complexity Deterministic Automaton
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML Schema: effortless handling of nondeterministic regular expressions. In: SIGMOD (2009)Google Scholar
- 2.Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Information and Computation 142(2), 182–206 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State Complexity of Basic Operations on Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 4.Caron, P., Han, Y.-S., Mignot, L.: Generalized One-Unambiguity. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 129–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 5.Ehrenfeucht, A., Zeiger, H.: Complexity measures for regular expressions. JCSS 12(2), 134–146 (1976)MathSciNetzbMATHGoogle Scholar
- 6.Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: new results and open problems. In: JALC, pp. 233–256 (2004)Google Scholar
- 7.Gelade, W., Idziaszek, T., Martens, W., Neven, F.: Simplifying XML Schema: Single-type approximations of regular tree languages. In: PODS (2010)Google Scholar
- 8.Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expressions. In: TOCL, pp. 4:1–4:19 (2012)Google Scholar
- 9.Gruber, H., Holzer, M.: Finite Automata, Digraph Connectivity, and Regular Expression Size. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 39–50. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 10.Gruber, H., Holzer, M.: Tight Bounds on the Descriptional Complexity of Regular Expressions. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 276–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 11.Gruber, H., Johannsen, J.: Optimal Lower Bounds on Regular Expression Size Using Communication Complexity. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 273–286. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 12.Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (2007)Google Scholar
- 13.Jirásek, J., Jirásková, G., Szabari, A.: State Complexity of Concatenation and Complementation of Regular Languages. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 178–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 14.Jirásková, G.: On the State Complexity of Complements, Stars, and Reversals of Regular Languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 15.Kintala, C., Wotschke, D.: Amounts of nondeterminism in finite automata. Acta Informatica 13, 199–204 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Losemann, K.: Boolesche Operationen auf deterministischen regulären Ausdrücken. Master’s thesis, TU Dortmund (October 2010)Google Scholar
- 17.Martens, W., Niewerth, M., Schwentick, T.: Schema design for XML repositories: Complexity and tractability. In: PODS (2010)Google Scholar
- 18.Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. In: IJFCS, pp. 145–159 (2002)Google Scholar
- 19.Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. In: TCS, pp. 315–329 (2004)Google Scholar
- 20.Yu, S.: State complexity of regular languages. In: JALC, p. 221 (2001)Google Scholar
- 21.Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. In: TCS, pp. 315–328 (1994)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012