Equations X + A = B and (X + X) + C = (X − X) + D over Sets of Natural Numbers

  • Tommi Lehtinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)

Abstract

It has recently been shown, that hyper-arithmetical sets can be represented as the unique solutions of language equations over sets of natural numbers with operations of addition, subtraction and union. It is shown that the same expressive power, under a certain encoding, can be achieved by systems of just two equations, X + A = B and (X + X) + C = (X − X) + D, without using union. It follows that the problems concerning the solutions of systems of the general form are as hard as the same problems restricted to these systems with two equations, it is known that the question for solution existence is \(\Sigma^1_1\) complete.

Keywords

Natural Number Formal Language Expressive Power Unary Word Periodic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. Journal of the ACM 9, 350–371 (1962)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jeż, A.: Conjunctive grammars can generate non-regular unary languages. International Journal of Foundations of Computer Science 19(3), 597–615 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Jeż, A., Okhotin, A.: Equations over sets of natural numbers with addition only. In: STACS 2009, Freiburg, Germany, February 26-28, pp. 577–588 (2009)Google Scholar
  4. 4.
    Jeż, A., Okhotin, A.: Least and Greatest Solutions of Equations over Sets of Integers. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 441–452. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Jeż, A., Okhotin, A.: On the Computational Completeness of Equations over Sets of Natural Numbers. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 63–74. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Jeż, A., Okhotin, A.: Representing hyper-arithmetical sets by equations over sets of integers. Theory of Computing Systems (accepted)Google Scholar
  7. 7.
    Kunc, M.: The power of commuting with finite sets of words. Theory of Computing Systems 40(4), 521–551 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kunc, M.: What Do We Know About Language Equations? In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 23–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Lehtinen, T., Okhotin, A.: On equations over sets of numbers and their limitations. International Journal of Foundations of Computer Science 22(2), 377–393 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lehtinen, T., Okhotin, A.: On Language Equations XXK = XXL and XM = N over a Unary Alphabet. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 291–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Leiss, E.L.: Unrestricted complementation in language equations over a one-letter alphabet. Theoretical Computer Science 132, 71–93 (1994)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Combinatorics 6(4), 519–535 (2001)MathSciNetMATHGoogle Scholar
  13. 13.
    Okhotin, A.: Decision problems for language equations. Journal of Computer and System Sciences 76(3-4), 251–266 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Okhotin, A.: Unresolved systems of language equations: expressive power and decision problems. Theoretical Computer Science 349(3), 283–308 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tommi Lehtinen
    • 1
    • 2
  1. 1.Turku Centre for Computer ScienceFinland
  2. 2.Department of MathematicsUniversity of TurkuFinland

Personalised recommendations