Reversal Hierarchies for Small 2DFAs

  • Christos A. Kapoutsis
  • Giovanni Pighizzini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)

Abstract

A two-way deterministic finite automaton with r(n) reversals performs ≤ r (n) input head reversals on every n-long input. Let 2D[r(n)] be all families of problems solvable by such automata of size polynomial in the index of the family. Then the reversal hierarchy 2D[0] ⊆ 2D[1] ⊆ 2D[2] ⊆ ⋯ is strict, but 2D[O(1)] = 2D[o(n)]. Moreover, the inner-reversal hierarchy 2D(0) ⊆ 2D(1) ⊆ 2D(2) ⊆ ⋯ , where now the bound is only for reversals strictly between the input end-markers, is also strict.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balcerzak, M., Niwiński, D.: Two-way deterministic automata with two reversals are exponentially more succinct than with one reversal. Information Processing Letters 110, 396–398 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Information and Computation 205(8), 1173–1187 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Hromkovič, J.: Descriptional complexity of finite automata: concepts and open problems. Journal of Automata, Languages and Combinatorics 7(4), 519–531 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Kapoutsis, C.: Nondeterminism is essential in small two-way finite automata with few reversals. Information and Computation (to appear)Google Scholar
  5. 5.
    Kapoutsis, C.: Deterministic moles cannot solve liveness. Journal of Automata, Languages and Combinatorics 12(1-2), 215–235 (2007)MathSciNetMATHGoogle Scholar
  6. 6.
    Kapoutsis, C., Královič, R., Mömke, T.: Size complexity of rotating and sweeping automata. Journal of Computer and System Sciences 78(2), 537–558 (2012)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of FOCS, pp. 188–191 (1971)Google Scholar
  8. 8.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC, pp. 275–286 (1978)Google Scholar
  9. 9.
    Sipser, M.: Halting space-bounded computations. Theoretical Computer Science 10, 335–338 (1980)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences 21(2), 195–202 (1980)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christos A. Kapoutsis
    • 1
  • Giovanni Pighizzini
    • 2
  1. 1.LIAFAUniversité Paris VIIFrance
  2. 2.DIUniversità degli Studi di MilanoItalia

Personalised recommendations