Strategy Machines and Their Complexity

  • Marcus Gelderie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)


We introduce a machine model for the execution of strategies in (regular) infinite games that refines the standard model of Mealy automata. This model of controllers is formalized in the terminological framework of Turing machines. We show how polynomially sized controllers can be found for Muller and Streett games. We are able to distinguish aspects of executing strategies (“size”, “latency”, “space consumption”) that are not visible in Mealy automata. Also, lower bound results are obtained.


Dition Arena Rovan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run: Hardware from psl. ENTCS 190, 3–16 (2007)Google Scholar
  2. 2.
    Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: LICS 1997, IEEE Computer Society. Washington, DC (1997)Google Scholar
  3. 3.
    Hunter, P., Dawar, A.: Complexity Bounds for Regular Games (Extended Abstract). In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 495–506. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hunter, P., Dawar, A.: Complexity bounds for muller games. Theoretical Computer Science (TCS) (2008) (submitted)Google Scholar
  5. 5.
    Horn, F.: Explicit muller games are ptime. In: FSTTCS, pp. 235–243 (2008)Google Scholar
  6. 6.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29, 132–158 (1999)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Holtmann, M., Löding, C.: Memory Reduction for Strategies in Infinite Games. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 253–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Gelderie, M., Holtmann, M.: Memory reduction via delayed simulation. In: iWIGP, pp. 46–60 (2011)Google Scholar
  9. 9.
    Grohe, M., Hernich, A., Schweikardt, N.: Lower bounds for processing data with few random accesses to external memory. J. ACM 56, 12:1–12:58 (2009)Google Scholar
  10. 10.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Madhusudan, P.: Synthesizing reactive programs. In: Proceedings of Comp. Sci. Log., CSL 2011, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 428–442 (2011)Google Scholar
  12. 12.
    Gelderie, M.: Strategy machines and their complexity. Technical Report AIB-2012-04, RWTH Aachen University (2012),
  13. 13.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata logics, and infinite games: a guide to current research. Springer, New York (2002)MATHGoogle Scholar
  14. 14.
    Löding, C.: Infinite games and automata theory. In: Apt, K.R., Grädel, E. (eds.) Lectures in Game Theory for Computer Scientists, Cambridge UP (2011)Google Scholar
  15. 15.
    Perrin, D., Pin, J.: Infinite words: automata, semigroups, logic and games. In: Pure and Applied Mathematics. Elsevier (2004)Google Scholar
  16. 16.
    Büchi, J.R., Landweber, L.H.: Solving Sequential Conditions by Finite-State Strategies. Trans. of the AMS 138, 295–311 (1969)Google Scholar
  17. 17.
    McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65(2), 149–184 (1993)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 60–65 (1982)Google Scholar
  19. 19.
    Safra, S.: Exponential determinization for ω-automata with strong-fairness acceptance condition (extended abstract). In: STOC 1992, pp. 275–282 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcus Gelderie
    • 1
  1. 1.Lehrstuhl für Informatik 7, Logic and Theory of Discrete SystemsRWTH AachenAachenGermany

Personalised recommendations