When Trees Grow Low: Shrubs and Fast MSO1

  • Robert Ganian
  • Petr Hliněný
  • Jaroslav Nešetřil
  • Jan Obdržálek
  • Patrice Ossona de Mendez
  • Reshma Ramadurai
Conference paper

DOI: 10.1007/978-3-642-32589-2_38

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)
Cite this paper as:
Ganian R., Hliněný P., Nešetřil J., Obdržálek J., Ossona de Mendez P., Ramadurai R. (2012) When Trees Grow Low: Shrubs and Fast MSO1. In: Rovan B., Sassone V., Widmayer P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg

Abstract

Recent characterization [9] of those graphs for which coloured MSO2 model checking is fast raised the interest in the graph invariant called tree-depth. Looking for a similar characterization for (coloured) MSO1, we introduce the notion of shrub-depth of a graph class. To prove that MSO1 model checking is fast for classes of bounded shrub-depth, we show that shrub-depth exactly characterizes the graph classes having interpretation in coloured trees of bounded height. We also introduce a common extension of cographs and of graphs with bounded shrub-depth — m-partite cographs (still of bounded clique-width), which are well quasi-ordered by the relation “is an induced subgraph of” and therefore allow polynomial time testing of hereditary properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Ganian
    • 1
  • Petr Hliněný
    • 2
  • Jaroslav Nešetřil
    • 3
  • Jan Obdržálek
    • 2
  • Patrice Ossona de Mendez
    • 4
  • Reshma Ramadurai
    • 2
  1. 1.Institute for InformaticsGoethe UniversityFrankfurtGermany
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  3. 3.Computer Science Inst. of Charles University (IUUK)PrahaCzech Republic
  4. 4.École des Hautes Études en Sciences SocialesCNRS UMR 8557ParisFrance

Personalised recommendations