Online Sum-Radii Clustering

  • Dimitris Fotakis
  • Paraschos Koutris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)

Abstract

In Online Sum-Radii Clustering, n demand points arrive online and must be irrevocably assigned to a cluster upon arrival. The cost of each cluster is the sum of a fixed opening cost and its radius, and the objective is to minimize the total cost of the clusters opened by the algorithm. We show that the deterministic competitive ratio of Online Sum-Radii Clustering for general metric spaces is Θ(logn), where the upper bound follows from a primal-dual online algorithm, and the lower bound is valid for ternary Hierarchically Well-Separated Trees (HSTs) and for the Euclidean plane. Combined with the results of (Csirik et al., MFCS 2010), this result demonstrates that the deterministic competitive ratio of Online Sum-Radii Clustering changes abruptly, from constant to logarithmic, when we move from the line to the plane. We also show that Online Sum-Radii Clustering in HSTs is closely related to the Parking Permit problem introduced by (Meyerson, FOCS 2005). Exploiting the relation to Parking Permit, we obtain a lower bound of Ω(loglogn) on the randomized competitive ratio of Online Sum-Radii Clustering in tree metrics. Moreover, we present a simple randomized O(logn)-competitive algorithm, and a deterministic O(loglogn)-competitive algorithm for the fractional version of the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A General Approach to Online Network Optimization Problems. ACM Transactions on Algorithms 2(4), 640–660 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The Online Set Cover Problem. SIAM J. on Computing 39(2), 361–370 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric Clustering to Minimize the Sum of Cluster Sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chan, T.M., Zarrabi-Zadeh, H.: A Randomized Algorithm for Online Unit Clustering. Theory of Computing Systems 45(3), 486–496 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental Clustering and Dynamic Information Retrieval. SIAM J. on Computing 33(6), 1417–1440 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Charikar, M., Panigrahy, R.: Clustering to Minimize the Sum of Cluster Diameters. J. of Computer and System Sciences 68(2), 417–441 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Csirik, J., Epstein, L., Imreh, C., Levin, A.: Online Clustering with Variable Sized Clusters. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 282–293. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Divéki, G., Imreh, C.: An Online 2-Dimensional Clustering Problem with Variable Sized Clusters. Submitted for publication (2011)Google Scholar
  9. 9.
    Doddi, S., Marathe, M.V., Ravi, S.S., Taylor, D.S., Widmayer, P.: Approximation Algorithms for Clustering to Minimize the Sum of Diameters. Nordic J. Computing 7(3), 185–203 (2000)MathSciNetMATHGoogle Scholar
  10. 10.
    Ehmsen, M.R., Larsen, K.S.: Better Bounds on Online Unit Clustering. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 371–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Epstein, L., van Stee, R.: On the Online Unit Clustering Problem. ACM Transactions on Algorithms 7(1), 7 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fotakis, D.: On the Competitive Ratio for Online Facility Location. Algorithmica 50(1), 1–57 (2008)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On Clustering to Minimize the Sum of Radii. In: SODA 2008, pp. 819–815 (2008)Google Scholar
  14. 14.
    Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On Metric Clustering to Minimize the Sum of Radii. Algorithmica 57, 484–498 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lev-Tov, N., Peleg, D.: Polynomial Time Approximation Schemes for Base Station Coverage with Minimum Total Radii. Computer Networks 47(4), 489–501 (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Meyerson, A.: Online Facility Location. In: FOCS 2001, pp. 426–431 (2001)Google Scholar
  17. 17.
    Meyerson, A.: The Parking Permit Problem. In: FOCS 2005, pp. 274–284 (2005)Google Scholar
  18. 18.
    Schaeffer, S.E.: Graph Clustering. Computer Science Review 1, 27–64 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dimitris Fotakis
    • 1
  • Paraschos Koutris
    • 2
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.Computer Science and EngineeringUniversity of WashingtonU.S.A.

Personalised recommendations