Parameterized Study of the Test Cover Problem

  • Robert Crowston
  • Gregory Gutin
  • Mark Jones
  • Saket Saurabh
  • Anders Yeo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)


In this paper we carry out a systematic study of a natural covering problem, used for identification across several areas, in the realm of parameterized complexity. In the Test Cover problem we are given a set [n] = {1,…,n} of items together with a collection, \(\cal T\), of distinct subsets of these items called tests. We assume that \(\cal T\) is a test cover, i.e., for each pair of items there is a test in \(\cal T\) containing exactly one of these items. The objective is to find a minimum size subcollection of \(\cal T\), which is still a test cover. The generic parameterized version of Test Cover is denoted by \(p(k,n,|{\cal T}|)\)-Test Cover. Here, we are given \(([n],\cal{T})\) and a positive integer parameter k as input and the objective is to decide whether there is a test cover of size at most \(p(k,n,|{\cal T}|)\). We study four parameterizations for Test Cover and obtain the following:

(a) k-Test Cover, and (n − k)-Test Cover are fixed-parameter tractable (FPT), i.e., these problems can be solved by algorithms of runtime \(f(k)\cdot poly(n,|{\cal T}|)\), where f(k) is a function of k only.

(b) \((|{\cal T}|-k)\)-Test Cover and (logn + k)-Test Cover are W[1]-hard. Thus, it is unlikely that these problems are FPT.


Parameterized Complexity Vertex Cover Test Cover Test Collection Blue Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving Max-r-Sat above a tight lower bound. Algorithmica 61, 638–655 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bondy, J.A.: Induced subsets. J. Combin. Th., Ser. B 12, 201–202 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Crowston, R., Fellows, M., Gutin, G., Jones, M., Rosamond, F., Thomassé, S., Yeo, A.: Simultaneously satisfying linear equations over \(\mathbb{F}_2\): MaxLin2 and Max-r-Lin2 parameterized above average. In: Proc. FSTTCS 2011. LIPICS, vol. 13, pp. 229–240 (2011)Google Scholar
  4. 4.
    Crowston, R., Gutin, G., Jones, M., Kim, E.J., Ruzsa, I.Z.: Systems of Linear Equations over \(\mathbb{F}_2\) and Problems Parameterized above Average. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 164–175. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  6. 6.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Co. (1979)Google Scholar
  8. 8.
    Gutin, G., Jones, M., Yeo, A.: Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems. Theor. Comput. Sci. 412, 5744–5751 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems parameterized above or below tight bounds. J. Comput. Syst. Sci. 77, 422–429 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: All Ternary Permutation Constraint Satisfaction Problems Parameterized Above Average Have Kernels with Quadratic Number of Variables. J. Comput. Syst. Sci. 78, 151–163 (2012)zbMATHCrossRefGoogle Scholar
  11. 11.
    Halldórsson, B.V., Halldórsson, M.M., Ravi, R.: On the Approximability of the Minimum Test Collection Problem. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 158–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Halldórsson, B.V., Minden, J.S., Ravi, R.: PIER: Proteinidentification by epitope recognition. In: Proc. Currents in Computational Molecular Biology 2001, pp. 109–110 (2001)Google Scholar
  13. 13.
    Lokshtanov, D., Marx, D., Saurabh, S.: Known Algorithms on Graphs on Bounded Treewidth are Probably Optimal. In: Proc. SODA, pp. 777–789 (2011)Google Scholar
  14. 14.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31, 335–354 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75, 137–153 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Moret, B.M.E., Shapiro, H.D.: On minimizing a set of tests. SIAM J. Scientific & Statistical Comput. 6, 983–1003 (1985)CrossRefGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Univ. Press (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Crowston
    • 1
  • Gregory Gutin
    • 1
  • Mark Jones
    • 1
  • Saket Saurabh
    • 2
  • Anders Yeo
    • 3
  1. 1.Royal Holloway, University of LondonEghamUK
  2. 2.The Institute of Mathematical SciencesChennaiIndia
  3. 3.University of JohannesburgAuckland ParkSouth Africa

Personalised recommendations