On the Complexity of Ontological Reasoning under Disjunctive Existential Rules

  • Georg Gottlob
  • Marco Manna
  • Michael Morak
  • Andreas Pieris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7464)


Ontology-based data access is an emerging yet powerful technology that allows to enhance a classical relational database with an ontology in order to infer new intensional knowledge. Recently, Datalog+/- was introduced with the purpose of providing tractable reasoning algorithms for expressive ontology languages. In this framework, Datalog is extended by features such as existential quantification in rule heads, and at the same time the rule syntax is restricted to guarantee decidability, and also tractability, of relevant reasoning tasks. In this paper, we enrich Datalog even more by allowing not only existential quantification but also disjunction in rule heads, and we investigate the complexity of reasoning under the obtained formalism.


Turing Machine Description Logic Disjunctive Normal Form Polynomial Space Ontology Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Alviano, M., Faber, W., Leone, N., Manna, M.: Disjunctive Datalog with existential quantifiers: Semantics, decidability, and complexity issues. In: TPLP (to appear, 2012)Google Scholar
  3. 3.
    Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic. J. Philosophical Logic 27(3), 217–274 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baader, F.: Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In: Proc. of IJCAI, pp. 319–324 (2003)Google Scholar
  5. 5.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of IJCAI, pp. 364–369 (2005)Google Scholar
  6. 6.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)Google Scholar
  7. 7.
    Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential variables: Walking the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bárány, V., Gottlob, G., Otto, M.: Querying the guarded fragment. In: Proc. of LICS, pp. 1–10 (2010)Google Scholar
  9. 9.
    Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  10. 10.
    Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams. Artif. Intell. 168(1-2), 70–118 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Cabibbo, L.: The expressive power of stratified logic programs with value invention. Inf. Comput. 147(1), 22–56 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: Proc. of KR, pp. 70–80 (2008)Google Scholar
  13. 13.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. In: Proc. of PODS, pp. 77–86 (2009)Google Scholar
  14. 14.
    Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog±: A family of logical knowledge representation and query languages for new applications. In: Proc. of LICS, pp. 228–242 (2010)Google Scholar
  15. 15.
    Calì, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. VLDB 3(1), 554–565 (2010)Google Scholar
  16. 16.
    Calì, A., Gottlob, G., Pieris, A.: Query Answering under Non-guarded Rules in Datalog±. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 1–17. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proc. of KR, pp. 260–270 (2006)Google Scholar
  18. 18.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3) (2007)Google Scholar
  19. 19.
    Chen, P.P.: The Entity-Relationship model - Toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)CrossRefGoogle Scholar
  20. 20.
    Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proc. of PODS, pp. 149–158 (2008)Google Scholar
  21. 21.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Trans. Database Syst. 22(3), 364–418 (1997)CrossRefGoogle Scholar
  22. 22.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Grädel, E.: On the restraining power of guards. J. Symb. Log. 64(4), 1719–1742 (1999)zbMATHCrossRefGoogle Scholar
  24. 24.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Krisnadhi, A., Lutz, C.: Data complexity in the EL family of DLs. In: Proc. of DL (2007)Google Scholar
  26. 26.
    Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and guardedness. In: Proc. of IJCAI, pp. 963–968 (2011)Google Scholar
  27. 27.
    Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable Datalog ∃  programs. In: Proc. of KR, pp. 13–23 (2012)Google Scholar
  28. 28.
    Marnette, B.: Generalized schema-mappings: From termination to tractability. In: Proc. of PODS, pp. 13–22 (2009)Google Scholar
  29. 29.
    Patel-Schneider, P.F., Horrocks, I.: A comparison of two modelling paradigms in the semantic web. J. Web Sem. 5(4), 240–250 (2007)CrossRefGoogle Scholar
  30. 30.
    Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semantics 10, 133–173 (2008)Google Scholar
  31. 31.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc. of STOCS, pp. 137–146 (1982)Google Scholar
  32. 32.
    Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. of PODS, pp. 266–276 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Georg Gottlob
    • 1
    • 2
    • 3
  • Marco Manna
    • 1
    • 4
  • Michael Morak
    • 1
  • Andreas Pieris
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK
  2. 2.Oxford-Man Institute of Quantitative FinanceUniversity of OxfordUK
  3. 3.Institute for the Future of ComputingOxford Martin SchoolUK
  4. 4.Department of MathematicsUniversity of CalabriaItaly

Personalised recommendations