Incremental Itemset Mining Based on Matrix Apriori Algorithm

  • Damla Oguz
  • Belgin Ergenc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7448)


Databases are updated continuously with increments and re-running the frequent itemset mining algorithms with every update is inefficient. Studies addressing incremental update problem generally propose incremental itemset mining methods based on Apriori and FP-Growth algorithms. Besides inheriting the disadvantages of base algorithms, incremental itemset mining has challenges such as handling i) increments without re-running the algorithm, ii) support changes, iii) new items and iv) addition/deletions in increments. In this paper, we focus on the solution of incremental update problem by proposing the Incremental Matrix Apriori Algorithm. It scans only new transactions, allows the change of minimum support and handles new items in the increments. The base algorithm Matrix Apriori works without candidate generation, scans database only twice and brings additional advantages. Performance studies show that Incremental Matrix Apriori provides speed-up between 41% and 92% while increment size is varied between 5% and 100%.


Itemset Mining Matrix Apriori Incremental Itemset Mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. ACM SIGMOD Record 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Han, J., Kamber, M.: Data mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Elsevier, San Francisco (2006)zbMATHGoogle Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: 20th International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)Google Scholar
  4. 4.
    Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. ACM SIGMOD Rec. 29(2), 1–12 (2000)CrossRefGoogle Scholar
  5. 5.
    Pavon, J., Viana, S., Gomez, S.: Matrix Apriori: Speeding Up the Search for Frequent Patterns. In: 24th IASTED International Conference on Database and Applications, pp. 75–82. ACTA Press, Anaheim (2006)Google Scholar
  6. 6.
    Yıldız, B., Ergenç, B.: Comparison of Two Association Rule Mining Algorithms without Candidate Generation. In: 10th IASTED International Conference on Artificial Intelligence and Applications, Innsbruck (2010)Google Scholar
  7. 7.
    Cheung, D., Han, J., Ng, V., Wong, C.: Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. In: 12th International Conference on Data Engineering, pp. 106–114. IEEE Computer Society, Washington (1996)Google Scholar
  8. 8.
    Woon, Y.K., Ng, W.K., Das, A.: Fast online dynamic association rule mining. In: 2nd International Conference, vol. 1, pp. 278–287 (2001)Google Scholar
  9. 9.
    Amornchewin, R., Kreesuradej, W.: Incremental Association Rule Mining Using Promising Frequent Itemset Algorithm. In: 6th International Conference on Information, Communications & Signal Processing, pp. 1–5 (2007)Google Scholar
  10. 10.
    Hong, T.P., Lin, C.W., Wu, Y.L.: Incrementally Fast Updated Frequent Pattern Trees. Expert Syst. Appl. 34(4), 2424–2435 (2008)CrossRefGoogle Scholar
  11. 11.
    Muhaimenul, A.R., Barker, K.: Alternative Method for Incrementally Constructing the FP-tree. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds.) Intelligent Techniques and Tools for Novel System Architectures. SCI, vol. 109, pp. 361–377. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Jin, R., Agrawal, G.: An Algorithm for In-Core Frequent Itemset Mining on Streaming Data. In: 5th IEEE International Conference on Data Mining, pp. 210–217. IEEE Computer Society, Washington (2005)Google Scholar
  13. 13.
    Calders, T., Dexters, N., Goethals, B.: Mining Frequent Itemsets in a Stream. In: 7th IEEE Conference on Data Mining, pp. 83–92. IEEE Computer Society, Washington (2007)CrossRefGoogle Scholar
  14. 14.
    Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 Algorithms in Data Mining. Knowl. Inf. Syst. 14(1), 1–37 (2007)CrossRefGoogle Scholar
  15. 15.
    Kotsiantis, S., Kanellopoulos, D.: Association Rules Mining: A Recent Overview Basic Concepts & Basic Association Rules Algorithms. Science 32(1), 71–82 (2006)Google Scholar
  16. 16.
    Park, J.S., Chen, M.S., Yu, P.S.: An Effective Hash-Based Algorithm for Mining Association Rules. SIGMOD Rec. 24(2), 175–186 (1995)CrossRefGoogle Scholar
  17. 17.
    Cheung, D.W.L., Lee, S.D., Kao, B.: A General Incremental Technique for Maintaining Discovered Association Rules. In: 5th International Conference on Database Systems for Advanced Applications, pp. 185–194. World Scientific Press (1997)Google Scholar
  18. 18.
    Lin, C.-W., Hong, T.-P., Lu, W.-H., Chien, B.-C.: Incremental Mining with Prelarge Trees. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 169–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Damla Oguz
    • 1
  • Belgin Ergenc
    • 1
  1. 1.Department of Computer EngineeringIzmir Institute of TechnologyIzmirTurkey

Personalised recommendations