Arel, D. R., & Coop, R. (November, 2009). DeSTIN: A scalable deep learning architecture with application to high-dimensional robust pattern recognition. In Proceedings of the AAAI 2009 Fall Symposium on Biologically Inspired Cognitive Architectures.
Arel, I. (2013). The threat of a reward-driven adversarial artificial general intelligence. In A. H. Eden, J. H. Moor, J. H. Søraker, & E. Steinhart (Eds.), The singularity hypothesis: a scientific and philosophical analysis (pp. 43–58). Heidelberg: Springer.
Arel, I., Rose, D., & Karnowski, T. (2010). Deep machine learning—a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine,
14, 12–18.
Baillargeon, R. (1994). Physical Reasoning in young infants: seeking explanations for impossible events.
British Journal of Developmental Psychology,
12, 9–33.
CrossRefBellman, R. (1957).
Dynamic programming. Princeton: Princeton University Press.
MATHBengio, Y. (2009). Learning deep architectures for AI.
Foundations and Trends in Machine Learning,
2(1), 1–127.
MathSciNetMATHCrossRefDietrich, E. (2001, October). Homo sapiens 2.0: why we should build the better robots of our nature. Journal of Experimental and Theoretical Artificial Intelligence, 13(4), 323–328.
Dietrich, E. (2007). After the humans are gone.
Journal of Experimental and Theoretical Artificial Intelligence,
19(1), 55–67.
MathSciNetCrossRefDuda, R., Hart, P., & Stork, D. (2000). Pattern recognition (2nd edn ed.). New York: Wiley-Interscience.
Ginsburg, G. S., & Bronstein, P. (1993). Family factors related to children’s intrinsic/extrinsic motivational orientation and academic performance.
Child Development,
64, 1461–1474.
CrossRefGray, P., Hurst, P., Lewis, S., & Meyer, R. (2001). Analysis and design of analog integrated circuits. New York: Wiley.
Hasler, P., & Dugger, J. (2005). An analog floating-gate node for supervised learning.
IEEE Transactions on Circuits and Systems I,
52(5), 834–845.
CrossRefHasler, P., Diorio, C., Minch, B. A., & Mead, C. (1995). Single transistor learning synapse with long term storage. IEEE International Symposium on Circuits and Systems, 1660–1663.
Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: new anatomical and computational perspectives.
Neural Networks,
15, 535–547.
CrossRefKelley, S. A., Brownell, C. A., & Campbell, S. B. (2000). Mastery motivation and self-evaluative affect in toddlers: longitudinal relations with maternal behavior.
Child Development,
71, 1061–71.
CrossRefLee, T. (2003). Hierarchical bayesian inference in the visual cortex.
Journal of the Optical Society of America,
20(7), 1434–1448.
CrossRefLee, T., Mumford, D., Romero, R., & Lamme, V. (1998). The role of the primary visual cortex in higher level vision.
Vision Research,
38, 2429–2454.
CrossRefMillner, A. D., & Goodale, M. A. (1996). The visual brain in action. Oxford: Oxford University Press.
Mishkin, M., Ungerkeuder, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways.
Trends in Neuroscience,
6, 414–417.
CrossRefRapaport, W. J. (2000). How to pass a turing test: syntactic semantics, natural—language understanding, and first-person cognition. Journal of Logic, Language, and Information, 9(4): 467–490. (Reprinted in The turing test: the elusive standard of artificial intelligence, pp. 161–14, by H. M. James, Ed., 2003, Dordrecht: Kluwer).
Rapaport, W. J. (2003). What did you mean by that? Misunderstanding, negotiation, and syntactic semantics.
Minds and Machines,
13(3), 397–427.
CrossRefSchultz, W. (1998). Predictive reward signal of dopamine neurons. The Journal of Neurophysiology,
80(1), 1–27.
Searle, J. R. (1980). Minds, brains, and programs.
Behavioral and Brain Sciences,
3, 417–457.
CrossRefSearle, J. R. (1982). The myth of the computer. New York Review of Books (29 April 1982): 3–6; cf. correspondence, same journal (24 June 1982): 56–57.
Suri, R. E., & Schultz, W. (1999). A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
Neuroscience,
91(3), 871–890.
CrossRefSutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.
Wallis, G., & Bülthoff, H. (1999). Learning to recognize objects.
Trends in Cognitive Sciences,
3(1), 23–31.
CrossRefWallis, G., & Rolls, E. (1997). Invariant face and object recognition in the visual system.
Progress in Neurobiology,
51, 167–194.
CrossRefWinston, P. H. (1975). Learning structural descriptions from examples. in Patrick HenryWinston (ed.), The Psychology of Computer Vision (New York: McGraw-Hill): 157– 209. (Reprinted in Readings in knowledge representation, pp. 141–168, by J. B. Ronald & J. L. Hector, Eds., 1985, Los Altos, CA: Morgan Kaufmann).