Detection of CAN by Ensemble Classifiers Based on Ripple Down Rules

  • Andrei Kelarev
  • Richard Dazeley
  • Andrew Stranieri
  • John Yearwood
  • Herbert Jelinek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7457)

Abstract

It is well known that classification models produced by the Ripple Down Rules are easier to maintain and update. They are compact and can provide an explanation of their reasoning making them easy to understand for medical practitioners. This article is devoted to an empirical investigation and comparison of several ensemble methods based on Ripple Down Rules in a novel application for the detection of cardiovascular autonomic neuropathy (CAN) from an extensive data set collected by the Diabetes Complications Screening Research Initiative at Charles Sturt University. Our experiments included essential ensemble methods, several more recent state-of-the-art techniques, and a novel consensus function based on graph partitioning. The results show that our novel application of Ripple Down Rules in ensemble classifiers for the detection of CAN achieved better performance parameters compared with the outcomes obtained previously in the literature.

Keywords

Consensus Function Ensemble Method Heart Rate Change Cardiovascular Autonomic Neuropathy Cardiac Autonomic Neuropathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36, 105–139 (1999)CrossRefGoogle Scholar
  2. 2.
    Bindoff, I., Kang, B.H.: Simulated Assessment of Ripple Round Rules. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 180–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bindoff, I., Kang, B.H.: Applying Multiple Classification Ripple Round Rules to a Complex Configuration Task. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 481–490. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)MathSciNetMATHGoogle Scholar
  5. 5.
    Compton, P., Jansen, R.: Knowledge in Context: a strategy for expert system maintenance. In: Second Australian Joint Artificial Intelligence Conference, AI 1988, pp. 292–306 (1988)Google Scholar
  6. 6.
    Compton, P., Jansen, R.: A philosophical basis for knowledge acquisition. Knowledge Acquisition 2, 241–258 (1990)CrossRefGoogle Scholar
  7. 7.
    Compton, P., Peters, L., Edwards, G., Lavers, T.: Experience with Ripple-Down Rules. Knowledge-Based Systems 19(5), 356–362 (2006)CrossRefGoogle Scholar
  8. 8.
    Cornforth, D., Jelinek, H.: Automated classification reveals morphological factors associated with dementia. Applied Soft Computing 8, 182–190 (2007)CrossRefGoogle Scholar
  9. 9.
    Dazeley, R., Kang, B.: Generalising Symbolic Knowledge in Online Classification and Prediction. In: Richards, D., Kang, B.-H. (eds.) PKAW 2008. LNCS (LNAI), vol. 5465, pp. 91–108. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Dazeley, R., Park, S., Kang, B.: Online knowledge validation with prudence analysis in a document management application. Expert Systems with Applications 38, 10959–10965 (2011)CrossRefGoogle Scholar
  11. 11.
    Dazeley, R., Warner, P., Johnson, S., Vamplew, P.: The Ballarat Incremental Knowledge Engine. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 195–207. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Dazeley, R., Yearwood, J., Kang, B., Kelarev, A.: Consensus Clustering and Supervised Classification for Profiling Phishing Emails in Internet Commerce Security. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 235–246. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Ewing, D., Campbell, J., Clarke, B.: The natural history of diabetic autonomic neuropathy. Q. J. Med. 49, 95–100 (1980)Google Scholar
  14. 14.
    Ewing, D., Martyn, C., Young, R., Clarke, B.: The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 8, 491–498 (1985)CrossRefGoogle Scholar
  15. 15.
    Fern, X., Brodley, C.: Solving cluster ensemble problems by bipartite graph partitioning. In: 21st International Conference on Machine Learning, ICML 2004, vol. 69, pp. 36–43. ACM, New York (2004)CrossRefGoogle Scholar
  16. 16.
    Finlayson, A., Compton, P.: Incremental Knowledge Acquisition Using Generalised RDR for Soccer Simulation. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 135–149. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. 13th Internat. Conf. Machine Learning, pp. 148–156 (1996)Google Scholar
  18. 18.
    Gaines, B., Compton, P.: Induction of Ripple-Down Rules applied to modeling large databases. J. Intell. Inf. Syst. 5(3), 211–228 (1995)CrossRefGoogle Scholar
  19. 19.
    Ho, V., Compton, P., Benatallah, B., Vayssière, J., Menzel, L., Vogler, H.: An incremental knowledge acquisition method for improving duplicate invoices detection. In: Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, pp. 1415–1418 (2009)Google Scholar
  20. 20.
    Huda, S., Jelinek, H., Ray, B., Stranieri, A., Yearwood, J.: Exploring novel features and decision rules to identify cardiovascular autonomic neuropathy using a hybrid of wrapper-filter based feature selection. In: Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP 2010, pp. 297–302 (2010)Google Scholar
  21. 21.
    Jelinek, H., Khandoker, A., Palaniswami, M., McDonald, S.: Heart rate variability and QT dispersion in a cohort of diabetes patients. Computing in Cardiology 37, 613–616 (2010)Google Scholar
  22. 22.
    Jelinek, H., Rocha, A., Carvalho, T., Goldenstein, S., Wainer, J.: Machine learning and pattern classification in identification of indigenous retinal pathology. In: Proceedings IEEE Conference Eng. Med. Biol. Soc., pp. 5951–5954 (2011)Google Scholar
  23. 23.
    Kang, B., Kelarev, A., Sale, A., Williams, R.: A New Model for Classifying DNA Code Inspired by Neural Networks and FSA. In: Hoffmann, A., Kang, B.-H., Richards, D., Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 187–198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Kang, B., Yoshida, K., Motoda, H., Compton, P.: A help desk system with intelligent interface. Applied Artificial Intelligence 11(7-8), 611–631 (1997)CrossRefGoogle Scholar
  25. 25.
    Kang, B., Compton, P.: Multiple Classification Ripple Down Rules. In: Third Japanese Knowledge Acquisition for Knowledge-Based Systems Workshop (1994)Google Scholar
  26. 26.
    Kang, B., Gambetta, W., Compton, P.: Verification and validation with ripple-down rules. International Journal of Human-Computer Studies 44(2), 257–269 (1996)CrossRefGoogle Scholar
  27. 27.
    Karypis, G., Kumar, V.: METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report, University of Minnesota, Department of Computer Science and Engineering, Army HPC Research Centre, Minneapolis (1998)Google Scholar
  28. 28.
    Kelarev, A., Kang, B., Steane, D.: Clustering Algorithms for ITS Sequence Data with Alignment Metrics. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1027–1031. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Khandoker, A., Jelinek, H., Palaniswami, M.: Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis. BioMedical Engineering OnLine 8 (2009), http://www.biomedical--engineering--online.com/content/8/1/3
  30. 30.
    Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Boston (1998)MATHCrossRefGoogle Scholar
  31. 31.
    Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: An ever evolving frontier in data mining. Journal of Machine Learning Research – Proceedings Track 10, 4–13 (2010)Google Scholar
  32. 32.
    Mandvikar, A., Liu, H., Motoda, H.: Compact Dual Ensembles for Active Learning. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 293–297. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Melville, P., Mooney, R.: Creating diversity in ensembles using artificial data. Information Fusion 6, 99–111 (2005)CrossRefGoogle Scholar
  34. 34.
    Ng, E., Hambly, B., McLachlan, C., Matthews, S., Jelinek, H.: WEKA machine learning classification in identifying autonomic dysfunction parameters associated with ACE insertion/deletion genotypes. In: Proceedings of the IASTED International Conference Biomedical Engineering, BioMed 2012, pp. 161–166 (2012)Google Scholar
  35. 35.
    Richards, D.: A social software/Web 2.0 approach to collaborative knowledge engineering. Information Sciences 179(15), 2515–2523 (2009)CrossRefGoogle Scholar
  36. 36.
    Richards, D., Compton, P.: Taking up the situated cognition challenge with ripple down rules. International Journal of Human-Computer Studies 49(6), 895–926 (1998)CrossRefGoogle Scholar
  37. 37.
    Richards, D.: Two decades of Ripple Down Rules research. Knowledge Eng. Review 24(2), 159–184 (2009)CrossRefGoogle Scholar
  38. 38.
    Seewald, A.K., Fürnkranz, J.: An Evaluation of Grading Classifiers. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 115–124. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. 39.
    Taylor, M., Richards, D.: Discovering Areas of Expertise from Publication Data. In: Richards, D., Kang, B.-H. (eds.) PKAW 2008. LNCS (LNAI), vol. 5465, pp. 218–230. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  40. 40.
    Ting, K., Witten, I.: Stacking bagged and dagged models. In: Fourteenth International Conference on Machine Learning, pp. 367–375 (1997)Google Scholar
  41. 41.
    Wada, T., Horiuchi, T., Motoda, H., Washio, T.: A description length-based decision criterion for default knowledge in the ripple down rules method. Knowledge and Information Systems 3(2), 146–167 (2001)MATHCrossRefGoogle Scholar
  42. 42.
    Webb, G.: Multiboosting: A technique for combining boosting and wagging. Machine Learning 40, 159–196 (2000)CrossRefGoogle Scholar
  43. 43.
    Wolpert, D.: The lack of a priori distinctions between learning algorithms. Neural Computation 8, 1341–1390 (1996)CrossRefGoogle Scholar
  44. 44.
    Wolpert, D.: Stacked generalization. Neural Networks 5, 241–259 (1992)CrossRefGoogle Scholar
  45. 45.
    Xu, H., Hoffmann, A.: RDRCE: Combining Machine Learning and Knowledge Acquisition. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 165–179. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  46. 46.
    Yearwood, J., Webb, D., Ma, L., Vamplew, P., Ofoghi, B., Kelarev, A.: Applying clustering and ensemble clustering approaches to phishing profiling. In: Data Mining and Analytics 2009, Proc. 8th Australasian Data Mining Conference: AusDM 2009, CRPIT, vol. 101, pp. 25–34 (2009)Google Scholar
  47. 47.
    Yearwood, J., Kang, B., Kelarev, A.: Experimental investigation of classification algorithms for ITS dataset. In: Pacific Rim Knowledge Acquisition Workshop, PKAW 2008, Hanoi, Vietnam, December 15-16, pp. 262–272 (2008)Google Scholar
  48. 48.
    Yoshida, T., Wada, T., Motoda, H., Washio, T.: Adaptive Ripple Down Rules method based on minimum description length principle. Intell. Data Anal. 8(3), 239–265 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrei Kelarev
    • 1
  • Richard Dazeley
    • 1
  • Andrew Stranieri
    • 1
  • John Yearwood
    • 1
  • Herbert Jelinek
    • 2
  1. 1.Centre for Informatics and Applied Optimization, School of SITEUniversity of BallaratBallaratAustralia
  2. 2.Centre for Research in Complex Systems and School of Community HealthCharles Sturt UniversityAlburyAustralia

Personalised recommendations