Predictive Prey Pursuit in a Whiskered Robot

  • Ben Mitchinson
  • Martin J. Pearson
  • Anthony G. Pipe
  • Tony J. Prescott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)


Highly active small mammals need to capture prey rapidly and with a high success rate if they are to survive. We consider the case of the Etruscan shrew, which hunts prey including crickets almost as large as itself, and relies on its whiskers (vibrissae) to complete a kill. We model this hunting behaviour using a whiskered robot. Shrews strike rapidly and accurately after gathering very limited sensory information; we attempt to match this performance by using model-based simultaneous discrimination and localisation of a ‘prey’ robot (i.e. by using strong priors). We report performance that is comparable, given the spatial and temporal scale differences, to shrew performance in most respects.


Mobile Robot Superior Colliculus Discrimination Performance Prey Capture Discrimination Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roth-Alpermann, C., Brecht, M.: Vibrissal touch in the etruscan shrew. Scholarpedia 4(11), 6830 (2009)CrossRefGoogle Scholar
  2. 2.
    Anjum, F., Turni, H., Mulder, P.G., van der Burg, J., Brecht, M.: Tactile guidance of prey capture in etruscan shrews. Proc. Natl. Acad. Sci. USA 103(44), 16544–16549 (2006)CrossRefGoogle Scholar
  3. 3.
    Munz, M., Brecht, M., Wolfe, J.: Active touch during shrew prey capture. Frontiers in Behavioral Neuroscience 4(191) (2010)Google Scholar
  4. 4.
    Mitchinson, B., Grant, R.A., Arkley, K., Rankov, V., Perkon, I., Prescott, T.J.: Active vibrissal sensing in rodents and marsupials. Phil. Trans. R. Soc. B 366, 3037–3048 (2011)CrossRefGoogle Scholar
  5. 5.
    Berg, R.W., Kleinfeld, D.: Rhythmic whisking by rat: Retraction as well as protraction of the vibrissae is under active muscular control. J. Neurophys. 89(1), 104–117 (2003)CrossRefGoogle Scholar
  6. 6.
    Pearson, M.J., Mitchinson, B., Welsby, J., Pipe, T., Prescott, T.J.: SCRATCHbot: Active Tactile Sensing in a Whiskered Mobile Robot. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 93–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Pearson, M.J., Mitchinson, B., Sullivan, J.C., Pipe, A.G., Prescott, T.J.: Biomimetic vibrissal sensing for robots. Phil. Trans. R. Soc. B 366, 3085–3096 (2011)CrossRefGoogle Scholar
  8. 8.
    Mitchinson, B., Pearson, M.J., Pipe, A.G., Prescott, T.J.: The emergence of action sequences from spatial attention: insight from mammal-like robots. In: Proceedings of Living Machines, Barcelona, July 9-12 (in press, 2012)Google Scholar
  9. 9.
    Fox, C., Evans, M., Pearson, M., Prescott, T.J.: Tactile slam with a biomimetic whiskered robot. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2012 (2012)Google Scholar
  10. 10.
    Mitchinson, B., Pearson, M., Melhuish, C., Prescott, T.J.: A Model of Sensorimotor Coordination in the Rat Whisker System. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 77–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Sullivan, J., Mitchinson, B., Pearson, M., Evans, M., Lepora, N., Fox, C., Melhuish, C., Prescott, T.: Tactile discrimination using active whisker sensors. IEEE Sensors Journal 12(2), 350–362 (2011)CrossRefGoogle Scholar
  12. 12.
    Mitchinson, B., Martin, C.J., Grant, R.A., Prescott, T.J.: Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Royal Society Proceedings B 274(1613), 1035–1041 (2007)CrossRefGoogle Scholar
  13. 13.
    Arai, K., Keller, E., Edelman, J.: Two-dimensional neural network model of the primate saccadic system. Neural Networks 7(6-7), 1115–1135 (1994)zbMATHCrossRefGoogle Scholar
  14. 14.
    Chambers, J., Gurney, K., Humphries, M., Prescott, A.: Mechanisms of choice in the primate brain: a quick look at positive feedback. In: Modelling Natural Action Selection: Proceedings of an International Workshop, pp. 45–52 (2005)Google Scholar
  15. 15.
    Brecht, M., Preilowski, B., Merzenich, M.M.: Functional architecture of the mystacial vibrissae. Behavioural Brain Research 84, 81–97 (1997)CrossRefGoogle Scholar
  16. 16.
    Straube, A., Büttner, U. (eds.): Neuro-ophthalmology: neuronal control of eye movements. S Karger Ag (2007)Google Scholar
  17. 17.
    Sahibzada, N., Dean, P., Redgrave, P.: Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6(3), 723–733 (1986)Google Scholar
  18. 18.
    Hemelt, M.E., Keller, A.: Superior sensation: superior colliculus participation in rat vibrissa system. BMC Neuroscience 8, 12 (2007)CrossRefGoogle Scholar
  19. 19.
    Gandhi, N.J., Katnani, H.A.: Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34, 205–231 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ben Mitchinson
    • 1
  • Martin J. Pearson
    • 2
  • Anthony G. Pipe
    • 2
  • Tony J. Prescott
    • 1
  1. 1.ATLAS Research GroupThe University of SheffieldUK
  2. 2.Bristol Robotics LaboratoryBristolUK

Personalised recommendations