Planning in Discrete and Continuous Spaces: From LTL Tasks to Robot Motions

  • Erion Plaku
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)

Abstract

Enabling robots to accomplish sophisticated tasks requires enhancing their capability to plan at multiple levels of discrete and continuous abstractions. Toward this goal, the proposed approach couples the ability of sampling-based motion planning to handle the complexity arising from high-dimensional robotic systems, nonlinear dynamics, and collision avoidance with the ability of discrete planning to handle discrete specifications. The approach makes it possible to specify tasks via Linear Temporal Logic (LTL) and automatically computes collision-free and dynamically-feasible motions that enable the robot to carry out assigned tasks. While discrete planning guides sampling-based motion planning, the latter feeds back information to further refine the guide and advance the search. Sampling is also used in the discrete space to shorten the length of the discrete plans and to expand the search toward new discrete states. Experiments with high-dimensional dynamical robot models performing various LTL tasks show significant computational speedups over related work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: theory and practice. Morgan Kaufmann (2004)Google Scholar
  2. 2.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)Google Scholar
  3. 3.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Stentz, A.: Optimal and efficient path planning for partially-known environments. In: IEEE Intl. Conf. on Robotics and Automation, San Diego, CA, pp. 3310–3317 (1994)Google Scholar
  5. 5.
    Tompkins, P., Stentz, A., Wettergreen, D.: Mission-level path planning and re-planning for rover exploration. Robotics and Autonomous Systems 54(1), 174–183 (2006)CrossRefGoogle Scholar
  6. 6.
    Saffiotti, A., Konolige, K., Ruspini, E.H.: A multivalued logic approach to integrating planning and control. Artificial Intelligence 76(1-2), 481–526 (1995)CrossRefGoogle Scholar
  7. 7.
    Kress-Gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control from abstraction and temporal logic specifications. IEEE Robotics and Automation Magazine 18(3), 65–74 (2011)CrossRefGoogle Scholar
  8. 8.
    Ding, X.C., Kloetzer, M., Chen, Y., Belta, C.: Formal methods for automatic deployment of robotic teams. IEEE Robotics and Automation Magazine 18(3), 75–86 (2011)CrossRefGoogle Scholar
  9. 9.
    Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic mobile robots. Automatica 45(2), 343–352 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion planning with dynamics by a synergistic combination of layers of planning. IEEE Trans. on Robotics 26(3), 469–482 (2010)CrossRefGoogle Scholar
  11. 11.
    Plaku, E., Hager, G.D.: Sampling-based motion and symbolic action planning with geometric and differential constraints. In: IEEE Intl. Conf. on Robotics and Automation, Anchorage, AK, pp. 5002–5008 (2010)Google Scholar
  12. 12.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL Safety Properties in Hybrid Systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 368–382. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Bhatia, A., Maly, M., Kavraki, L., Vardi, M.: Motion planning with complex goals. IEEE Robotics Automation Magazine 18, 55–64 (2011)CrossRefGoogle Scholar
  14. 14.
    Kupferman, O., Vardi, M.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Sistla, A.: Safety, liveness and fairness in temporal logic. Formal Aspects of Computing 6, 495–511 (1994)MATHCrossRefGoogle Scholar
  16. 16.
    Laumond, J.: Controllability of a multibody mobile robot. IEEE Trans. on Robotics and Automation 9(6), 755–763 (1993)CrossRefGoogle Scholar
  17. 17.
    Van Den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. Intl. J. of Robotics Research 30(7), 895–913 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erion Plaku
    • 1
  1. 1.Dept. of Electrical Engineering and Computer ScienceCatholic University of AmericaWashington DCUSA

Personalised recommendations