Distributed Paraconsistent Belief Fusion

Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 446)

Abstract

The current paper is devoted to belief fusion when information sources may deliver incomplete and inconsistent information. In such cases paraconsistent and commonsense reasoning techniques can be used to complete missing knowledge and disambiguate inconsistencies. We propose a novel, realistic model of distributed belief fusion and an implementation framework guaranteeing its tractability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Pub. Co (1996)Google Scholar
  2. 2.
    Alferes, J.J., Moniz Pereira, L.: Reasoning with Logic Programming. LNCS, vol. 1111. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Belnap, N.: A useful four-valued logic. In: Eptein, G., Dunn, J. (eds.) Modern Uses of Many Valued Logic, pp. 8–37. Reidel (1977)Google Scholar
  4. 4.
    Besnard, P.: An Introduction to Default Logic. Springer (1989)Google Scholar
  5. 5.
    Brewka, G.: Non-Monotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press (1991)Google Scholar
  6. 6.
    Cadoli, M., Eiter, T., Gottlob, G.: Complexity of propositional nested circumscription and nested abnormality theories. ACM Trans. Comput. Log. 6(2), 232–272 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cadoli, M., Schaerf, M.: A survey on complexity results for non-monotonic logics. Journal Logic Programming 17, 127–160 (1993)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Damásio, C., Pereira, L.: A survey of paraconsistent semantics for logic programs. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 2, pp. 241–320. Kluwer (1998)Google Scholar
  9. 9.
    Dubois, D.: On ignorance and contradiction considered as truth-values. Logic Journal of the IGPL 16(2), 195–216 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Dunin-Kęplicz, B., Szałas, A.: Epistemic Profiles and Belief Structures. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327, pp. 360–369. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world reasoning are \(\Pi^P_2\)-complete. Theoretical Computer Science 114(2), 231–245 (1993)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Etzioni, O., Golden, K., Weld, D.: Sound and efficient closed-world reasoning for planning. Artificial Intelligence 89, 113–148 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Fages, F.: Consistency of Clark’s completion and existence of stable models. Methods of Logic in Computer Science 1, 51–60 (1994)Google Scholar
  14. 14.
    Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Łukaszewicz, W.: Non-Monotonic Reasoning - Formalization of Commonsense Reasoning. Ellis Horwood (1990)Google Scholar
  16. 16.
    Małuszyński, J., Szałas, A.: Living with Inconsistency and Taming Nonmonotonicity. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 384–398. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Małuszyński, J., Szałas, A.: Logical foundations and complexity of 4QL, a query language with unrestricted negation. Journal of Applied Non-Classical Logics 21(2), 211–232 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Marek, V., Truszczyński, M.: Nonmonotonic Logic. Springer (1993)Google Scholar
  19. 19.
    Mascardi, V., Demergasso, D., Ancona, D.: Languages for programming BDI-style agents: an overview. In: Corradini, F., De Paoli, F., Merelli, E., Omicini, A. (eds.) WOA 2005 - Workshop From Objects to Agents, pp. 9–15 (2005)Google Scholar
  20. 20.
    Moore, R.: Possible-world semantics for autoepistemic logic. In: Proc. 1st Nonmonotonic Reasoning Workshop, pp. 344–354 (1984)Google Scholar
  21. 21.
    Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 353–395 (1994)Google Scholar
  22. 22.
    Szałas, A.: How an agent might think. Logic Journal of the IGPL (to appear, 2012)Google Scholar
  23. 23.
    Vitória, A., Małuszyński, J., Szałas, A.: Modeling and reasoning with paraconsistent rough sets. Fundamenta Informaticae 97(4), 405–438 (2009)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland
  2. 2.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  3. 3.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations