Auction of Time as a Tool for Solving Multiagent Scheduling Problems

  • Piotr ModlińskiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 185)


The paper presents an idea of multi-agent scheduling problem as an extension of the classical models. In contrary to the classical approach, where the individual operations have pre-defined weights, a lot of players (agents) with different (often conflicting) preferences for performing various operations appear. A formal model of the problem is formulated and the general concept of scheduling problem formulation in the market form is presented. In the paper the exemplary application of the market mechanism for the specific problem appears.


Allocation Rule Offer Price Single Objective Function Exemplary Application Auction Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kacprzak, P.H., Kaleta, M., Pałka, P., Smolira, K., Toczyłowski, E., Traczyk, T.: M3: Open multi-commodity market data model for network systems. In: 16th International Conference on Systems Science, pp. 309–319 (2007)Google Scholar
  2. 2.
    Kaleta, M., Traczyk, T. (eds.): Modeling Multi-commodity Trade. AISC, vol. 121. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Modliński, P.: Problem harmonogramowania jako kombinatoryczna aukcja czasu. Studia i Materiały Polskiego Stowarzyszenia Zarządzania Wiedzą 33 (2010) (in Polish)Google Scholar
  4. 4.
    Paul, J., Catholic Church. Pope (1978-2005 : John Paul II), Gałkowski, J.: Laborem exercens: tekst i komentarze. Jan Paweł II naucza. Red. Wydawnictw Katolickiego Uniwersytetu Lubelskiego (1986) (in Polish)Google Scholar
  5. 5.
    Schultz, D.P., Schultz, S.E., Kranas, G.: Psychologia a wyzwania dzisiejszej pracy. Wydawnictwo Naukowe PWN (2006) (in Polish)Google Scholar
  6. 6.
    Strevell, M., Chong, P.: Gambling on vacation. Interfaces 15(2), 63–67 (1985)CrossRefGoogle Scholar
  7. 7.
    Toczyłowski, E.: Optimization of Market Processes under Constraints. II extended edition. EXIT Academic Publishing (2003) (in Polish)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringWarsawPoland

Personalised recommendations