Advertisement

Abstract

We consider node-weighted network design problems, in particular the survivable network design problem (SNDP) and its prize-collecting version (PC-SNDP). The input consists of a node-weighted undirected graph G = (V,E) and integral connectivity requirements r(st) for each pair of nodes st. The goal is to find a minimum node-weighted subgraph H of G such that, for each pair st, H contains r(st) edge-disjoint paths between s and t. PC-SNDP is a generalization in which the input also includes a penalty π(st) for each pair, and the goal is to find a subgraph H to minimize the sum of the weight of H and the sum of the penalties for all pairs whose connectivity requirements are not fully satisfied by H. Let k =  max st r(st) be the maximum requirement. There has been no non-trivial approximation for node-weighted PC-SNDP for k > 1, the main reason being the lack of an LP relaxation based approach for node-weighted SNDP. In this paper we describe multiroute-flow based relaxations for the two problems and obtain approximation algorithms for PC-SNDP through them. The approximation ratios we obtain for PC-SNDP are similar to those that were previously known for SNDP via combinatorial algorithms. Specifically, we obtain an O(k 2 logn)-approximation in general graphs and an O(k 2)-approximation in graphs that exclude a fixed minor. The approximation ratios can be improved by a factor of k but the running times of the algorithms depend polynomially on n k .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, C.C., Orlin, J.B.: On multiroute maximum flows in networks. Networks 39(1), 43–52 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Mathematical Programming 59(1), 413–420 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proc. of ACM-SIAM SODA, pp. 106–115 (2000)Google Scholar
  4. 4.
    Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of Capacitated Network Design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 78–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Chekuri, C., Ene, A., Vakilian, A.: Node-Weighted Network Design in Planar and Minor-Closed Families of Graphs. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 206–217. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Chudak, F.A., Nagano, K.: Efficient solutions to relaxations of combinatorial problems with submodular penalties via the Lovász extension and non-smooth convex optimization. In: Proc. of ACM-SIAM SODA, pp. 79–88 (2007)Google Scholar
  7. 7.
    Chuzhoy, J., Khanna, S.: An O(k 3 logn)-approximation algorithm for vertex-connectivity survivable network design. In: Proc. of IEEE FOCS, pp. 437–441 (2009)Google Scholar
  8. 8.
    Demaine, E.D., Hajiaghayi, M.T., Klein, P.: Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 328–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Guha, S., Moss, A., Naor, J.S., Schieber, B.: Efficient recovery from power outage. In: Proc. of ACM STOC, pp. 574–582 (1999)Google Scholar
  10. 10.
    Gutner, S.: Elementary approximation algorithms for prize collecting Steiner tree problems. Information Processing Letters 107(1), 39–44 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hajiaghayi, M.T., Jain, K.: The prize-collecting generalized Steiner tree problem via a new approach of primal-dual schema. In: Proc. of ACM-SIAM SODA, pp. 631–640 (2006)Google Scholar
  12. 12.
    Hajiaghayi, M.T., Khandekar, R., Kortsarz, G., Nutov, Z.: Prize-Collecting Steiner Network Problems. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 71–84. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Hajiaghayi, M.T., Nasri, A.A.: Prize-Collecting Steiner Networks via Iterative Rounding. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 515–526. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (1998); Preliminary version in FOCS 1998CrossRefGoogle Scholar
  15. 15.
    Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem: theory and practice. In: Proc. of ACM-SIAM SODA, pp. 760–769 (2000)Google Scholar
  16. 16.
    Kishimoto, W.: A method for obtaining the maximum multiroute flows in a network. Networks 27(4), 279–291 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. J. Algorithms 19(1), 104–115 (1995); Preliminary version in IPCO 1993MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Nagarajan, C., Sharma, Y., Williamson, D.P.: Approximation Algorithms for Prize-Collecting Network Design Problems with General Connectivity Requirements. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 174–187. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Nutov, Z.: Approximating Steiner networks with node-weights. SIAM Journal of Computing 39(7), 3001–3022 (2010); Preliminary version in Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.): LATIN 2008. LNCS, vol. 4957. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Sharma, Y., Swamy, C., Williamson, D.P.: Approximation algorithms for prize collecting forest problems with submodular penalty functions. In: Proc. of ACM-SIAM SODA, pp. 1275–1284 (2007)Google Scholar
  21. 21.
    Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual approximation algorithm for generalized Steiner network problems. Combinatorica 15(3), 435–454 (1995); Preliminary version in STOC 1993MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chandra Chekuri
    • 1
  • Alina Ene
    • 1
  • Ali Vakilian
    • 1
  1. 1.Dept. of Computer ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations