On the Coin Weighing Problem with the Presence of Noise

  • Nader H. Bshouty
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7408)

Abstract

In this paper we consider the following coin weighing problem: Given n coins for which some of them are counterfeit with the same weight. The problem is: given the weights of the counterfeit coin and the authentic coin, detect the counterfeit coins a with minimal number of weighings. This problem has many applications in computational learning theory, compressed sensing and multiple access adder channels.

An old optimal non-adaptive polynomial time algorithm of Lindstrom can detect the counterfeit coins with O(n/logn) weighings. An information theoretic proof shows that Lindstrom’s algorithm is optimal. In this paper we study non-adaptive algorithms for this problem when some of the answers of the weighings received are incorrect or unknown.

We show that no coin weighing algorithm exists that can detect the counterfeit coins when the number of incorrect weighings is more than 1/4 fraction of the number of weighings. We also give the tight bound Θ(n/logn) for the number of weighings when the number of incorrect answers is less than 1/4 fraction of the number of weighings.

We then give a non-adaptive polynomial time algorithm that detects the counterfeit coins with k = O(n/loglogn) weighings even if some constant fraction of the answers of the weighings received are incorrect. This improves Bshouty and Mazzawi’s algorithm [7] that uses O(n) weighings. This is the first sublinear algorithm for this problem.

Keywords

Polynomial Time Polynomial Time Algorithm Query Complexity Incorrect Answer Noisy Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Combinatorial Search. John Wiley and Sons (1988)Google Scholar
  2. 2.
    Alon, N., Asodi, V.: Learning a Hidden Subgraph. SIAM J. Discrete Math. 18(4), 697–712 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Biglieri, E., Györfi, L.: Multiple Access Channels Theory and Practice Volume 10 NATO Security through Science Series - D: Information and Communication Security (April 2007)Google Scholar
  4. 4.
    Bruneau, L., Germinet, F.: On the singularity of random matrices with independent entries. Proc. Amer. Math. Soc. 137, 787–792 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bshouty, N.H.: Optimal Algorithms for the Coin Weighing Problem with a Spring Scale. In: Conference on Learning Theory (2009)Google Scholar
  6. 6.
    Bshouty, N.H., Mazzawi, H.: Toward a Deterministic Polynomial Time Algorithm with Optimal Additive Query Complexity. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 221–232. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bshouty, N.H., Mazzawi, H.: Algorithms for the Coin Weighing Problems with the Presence of Noise. ECCC, TR11-124Google Scholar
  8. 8.
    Cantor, D.: Determining a set from the cardinalities of its intersections with other sets. Canadian Journal of Athematics 16, 94–97 (1962)CrossRefGoogle Scholar
  9. 9.
    Cheng, J., Kamoi, K., Watanabe, Y.: User Identification by Signature Code for Noisy Multiple-Access Adder Channel. In: ISIT (2006)Google Scholar
  10. 10.
    Cantor, D., Mills, W.: Determining a Subset from Certain Combinatorial Properties. Canad. J. Math. 18, 42–48 (1966)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chang, S.C., Weldon, E.J.: Coding for T-user multiple access channels. IEEE Transactions on Information Theory 25(6), 684–691 (1979)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cheng, J., Watanabe, Y.: A Multiuser k-Ary Code for the Noisy Multiple-Access Adder Channel. IEEE Transactions on Information Theory 47, 6 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cheng, J., Watanabe, Y.: Affine Code for T-User Noisy Multiple Access Adder Channel. IEICE Trans. Fundamentals E83-A(3) (2000)Google Scholar
  14. 14.
    Choi, S., Han Kim, J.: Optimal Query Complexity Bounds for Finding Graphs. In: STOC, pp. 749–758 (2008)Google Scholar
  15. 15.
    Cheng, J., Kamoi, K., Watanabe, Y.: User Identification by Signature Code for Noisy Multiple-Access Adder Channel. In: IEEE International Symposium on Information Theory, pp. 1974–1977 (2006)Google Scholar
  16. 16.
    Du, D., Hwang, F.K.: Combinatorial group testing and its application. Series on applied mathematics, vol. 3. World Science (1993)Google Scholar
  17. 17.
    Danev, D., Laczay, B., Ruszinkó, M.: Multiple Access Adder Channel. Multiple Access Channels - Theory and Practice, pp. 26–53. IOS Press (2007)Google Scholar
  18. 18.
    Erdös, Rényi, A.: On two problems of information theory. Publ. Math. Inst. Hung. Acad. Sci. 8, 241–254 (1963)Google Scholar
  19. 19.
    Grebinski, V., Kucherov, G.: Optimal Reconstruction of Graphs Under the Additive Model. Algorithmica 28(1), 104–124 (2000)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Grebiniski, V., Kucherov, G.: Reconstructing a hamiltonian cycle by querying the graph: Application to DNA physical mapping. Discrete Applied Mathematics 88, 147–165 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Grebinski, V.: On the Power of Additive Combinatorial Search Model. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 194–203. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Indyk, P., Ruzic, M.: Near-Optimal Sparse Recovery in the L1 Norm. In: FOCS 2008, pp. 199–207 (2008)Google Scholar
  23. 23.
    Khachatrian, G.K., Martirossian, S.S.: Codes for T-user Noiseless Adder Channel. Problems of Control and Information Theory 16, 187–192 (1987)MathSciNetMATHGoogle Scholar
  24. 24.
    Komlós, J.: On the determinant of matrices. Studia. Sci. Math. Hungar. 2, 7–21 (1967)MathSciNetMATHGoogle Scholar
  25. 25.
    Laczay, B.: Coding for the Multiple Access Adder Channel (2003)Google Scholar
  26. 26.
    Lindström, B.: On a combinatorial problem in number theory. Canad. Math. Bull. 8, 477–490 (1965)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Lindström, B.: On a combinatorial detection problem II. Studia Scientiarum Mathematicarum Hungarica 1, 353–361 (1966)MathSciNetMATHGoogle Scholar
  28. 28.
    Lindström, B.: On Möbius functions and a problem in combinatorial number theory. Canad. Math. Bull. 14(4), 513–516 (1971)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lindström, B.: Determining subsets by unramified experiments. In: Srivastava, J.N. (ed.) A Survey of Statistical Designs and Linear Models, pp. 407–418. North Holland, Amsterdam (1975)Google Scholar
  30. 30.
    Li, M., Vitányi, P.M.B.: Combinatorics and Kolmogorov Complexity. In: Structure in Complexity Theory Conference, pp. 154–163 (1991)Google Scholar
  31. 31.
    Moser, L.: The second moment method in combinatorial analysis. In: Combinatorial Structure and their Applications, pp. 283–384. Gordon and Breach (1970)Google Scholar
  32. 32.
    Pippenger, N.: An Informtation Theoretic Method in Combinatorial Theory. J. Comb. Theory, Ser. A 23(1), 99–104 (1977)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Pippenger, N.: Bounds on the performance of protocols for a multiple-access broadcast channel. IEEE Transactions on Information Theory 27(2), 145–151 (1981)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  35. 35.
    Soderberg, S., Shapiro, H.S.: A combinatory detection problem. American Mathematical Monthly 70, 1066–1070 (1963)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wilson, J.H.: Error-Correcting Codes for a T-User Binary Adder Channel. IEEE Transactions of Information Theory 34(4) (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nader H. Bshouty
    • 1
  1. 1.TechnionIsrael

Personalised recommendations