Advertisement

Abstract

We show that given a satisfiable instance of the 2-to-1 Label Cover problem, it is NP-hard to find a \((\frac{23}{24} + \epsilon)\)-satisfying assignment.

Keywords

Constraint Satisfaction Problem Vertex Cover Hardness Result Satisfying Assignment Annual IEEE Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for Unique Games and related problems. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 563–572 (2010)Google Scholar
  2. 2.
    Austrin, P., Mossel, E.: Approximation resistant predicates from pairwise independence. Computational Complexity 18(2), 249–271 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Austrin, P., O’Donnell, R., Wright, J.: A new point of NP-hardness for 2-to-1 Label Cover. CoRR, abs/1204.5666 (2012) Google Scholar
  4. 4.
    Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hierarchies via global correlation. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (2011)Google Scholar
  5. 5.
    Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring. SIAM Journal on Computing 39(3), 843–873 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Feige, U., Kilian, J.: Two prover protocols: low error at affordable rates. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp. 172–183 (1994)Google Scholar
  7. 7.
    Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18(1), 67–81 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Goemans, M., Williamson, D.: Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. Journal of Computer & System Sciences 68(2), 442–470 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Guruswami, V., Khot, S., O’Donnell, R., Popat, P., Tulsiani, M., Wu, Y.: SDP Gaps for 2-to-1 and Other Label-Cover Variants. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 617–628. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Guruswami, V., Lewin, D., Sudan, M., Trevisan, L.: A tight characterization of NP with 3 query PCPs. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 8–17 (1998)Google Scholar
  11. 11.
    Guruswami, V., Sinop, A.: Lasserre hierarchy, higher eigenvalues, and approximation schemes for quadratic integer programming with PSD objectives. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (2011)Google Scholar
  12. 12.
    Guruswami, V., Sinop, A.K.: Improved inapproximability results for Maximum k-Colorable Subgraph. In: Proceedings of the 12th Annual International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 163–176 (2009)Google Scholar
  13. 13.
    Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System Sciences 62(2), 367–375 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th ACM Symposium on Theory of Computing, pp. 767–775 (2002)Google Scholar
  16. 16.
    Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for Max-Cut and other 2-variable CSPs? SIAM Journal on Computing 37(1), 319–357 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Khot, S., Regev, O.: Vertex Cover might be hard to approximate to within 2 − ε. In: Proc. 18th IEEE Conference on Computational Complexity, pp. 379–386 (2003)Google Scholar
  18. 18.
    Moshkovitz, D., Roz, R.: Two-query PCP with subconstant error. Journal of the ACM 57(5), 29 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    O’Donnell, R., Wright, J.: A new point of NP-hardness for Unique-Games. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pp. 289–306 (2012)Google Scholar
  20. 20.
    O’Donnell, R., Wu, Y.: Conditional hardness for satisfiable 3-CSPs. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 493–502 (2009)Google Scholar
  21. 21.
    Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 245–254 (2008)Google Scholar
  22. 22.
    Raz, R.: A parallel repetition theorem. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 447–456 (1995)Google Scholar
  23. 23.
    Steurer, D.: Subexponential algorithms for d-to-1 two-prover games and for certifying almost perfect expansion. Available at the author’s website (2010)Google Scholar
  24. 24.
    Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zwick, U.: Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 201–210 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Per Austrin
    • 1
  • Ryan O’Donnell
    • 2
  • John Wright
    • 2
  1. 1.Department of Computer ScienceUniversity of TorontoCanada
  2. 2.Department of Computer ScienceCarnegie Mellon UniversityUSA

Personalised recommendations