A New Point of NP-Hardness for 2-to-1 Label Cover

  • Per Austrin
  • Ryan O’Donnell
  • John Wright
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7408)

Abstract

We show that given a satisfiable instance of the 2-to-1 Label Cover problem, it is NP-hard to find a \((\frac{23}{24} + \epsilon)\)-satisfying assignment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for Unique Games and related problems. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 563–572 (2010)Google Scholar
  2. 2.
    Austrin, P., Mossel, E.: Approximation resistant predicates from pairwise independence. Computational Complexity 18(2), 249–271 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Austrin, P., O’Donnell, R., Wright, J.: A new point of NP-hardness for 2-to-1 Label Cover. CoRR, abs/1204.5666 (2012) Google Scholar
  4. 4.
    Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hierarchies via global correlation. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (2011)Google Scholar
  5. 5.
    Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring. SIAM Journal on Computing 39(3), 843–873 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Feige, U., Kilian, J.: Two prover protocols: low error at affordable rates. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp. 172–183 (1994)Google Scholar
  7. 7.
    Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18(1), 67–81 (1997)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Goemans, M., Williamson, D.: Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. Journal of Computer & System Sciences 68(2), 442–470 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Guruswami, V., Khot, S., O’Donnell, R., Popat, P., Tulsiani, M., Wu, Y.: SDP Gaps for 2-to-1 and Other Label-Cover Variants. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 617–628. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Guruswami, V., Lewin, D., Sudan, M., Trevisan, L.: A tight characterization of NP with 3 query PCPs. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 8–17 (1998)Google Scholar
  11. 11.
    Guruswami, V., Sinop, A.: Lasserre hierarchy, higher eigenvalues, and approximation schemes for quadratic integer programming with PSD objectives. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (2011)Google Scholar
  12. 12.
    Guruswami, V., Sinop, A.K.: Improved inapproximability results for Maximum k-Colorable Subgraph. In: Proceedings of the 12th Annual International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 163–176 (2009)Google Scholar
  13. 13.
    Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System Sciences 62(2), 367–375 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th ACM Symposium on Theory of Computing, pp. 767–775 (2002)Google Scholar
  16. 16.
    Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for Max-Cut and other 2-variable CSPs? SIAM Journal on Computing 37(1), 319–357 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Khot, S., Regev, O.: Vertex Cover might be hard to approximate to within 2 − ε. In: Proc. 18th IEEE Conference on Computational Complexity, pp. 379–386 (2003)Google Scholar
  18. 18.
    Moshkovitz, D., Roz, R.: Two-query PCP with subconstant error. Journal of the ACM 57(5), 29 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    O’Donnell, R., Wright, J.: A new point of NP-hardness for Unique-Games. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pp. 289–306 (2012)Google Scholar
  20. 20.
    O’Donnell, R., Wu, Y.: Conditional hardness for satisfiable 3-CSPs. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 493–502 (2009)Google Scholar
  21. 21.
    Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 245–254 (2008)Google Scholar
  22. 22.
    Raz, R.: A parallel repetition theorem. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 447–456 (1995)Google Scholar
  23. 23.
    Steurer, D.: Subexponential algorithms for d-to-1 two-prover games and for certifying almost perfect expansion. Available at the author’s website (2010)Google Scholar
  24. 24.
    Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Zwick, U.: Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 201–210 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Per Austrin
    • 1
  • Ryan O’Donnell
    • 2
  • John Wright
    • 2
  1. 1.Department of Computer ScienceUniversity of TorontoCanada
  2. 2.Department of Computer ScienceCarnegie Mellon UniversityUSA

Personalised recommendations