Anisotropy of Mica Probed by Nanoindentation

  • Rohit Pant
  • Liming Hu
  • Guoping Zhang
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

Clay minerals, abundant in soils and shales, are characterized by their distinct, nanoscale layered crystal structure that is known to result in anisotropic responses to loading. Owing to their tiny sizes, it is a significant challenge to determine their anisotropic properties. This paper presents a pioneering nanoindentation study to probe the anisotropy of a muscovite that was subjected to loading at directions both normal and parallel to the basal plane. The hardness, H, and indentation modulus, M, vary with loading directions. The load-displacement curves indicate remarkable difference during indentation loading and unloading, and the basal plane exhibits a stronger penetration resistance (i.e., H) than the edge, while the M in the direction perpendicular to the basal plane is smaller than that in the direction parallel to the basal plane. The anisotropic behavior is also interpreted along the mineral’s unique layered structure as well as the nanoscale deformation mechanisms.

Keywords

Basal Plane Plastic Anisotropy Indentation Size Effect Indentation Modulus Indentation Imprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, K.S., Ryzhova, T.V.: Elastic properties of rock-forming minerals II. Bull Acad Scie USSR, Geophys. Ser. English Translation 12, 1165–1168 (1961)Google Scholar
  2. Barsoum, M.W., Murugaiah, A., Kalidindi, S.R., Zhen, T.: Kinking Nonlinear Elastic Solids, Nanoindentations, and Geology. Phys. Rev. Lett. 92(25), 255508 (2004)CrossRefGoogle Scholar
  3. Bobko, C., Ulm, F.-J.: The nano-mechanical morphology of shale. Mech. Mater. 40(4-5), 318–337 (2008), doi:10.1016/j.mechmat.2007.09.006CrossRefGoogle Scholar
  4. Christoffersen, R., Kronenberg, A.K.: Dislocation interactions in experimentally deformed biotite. J. Struct. Geol. 15(9), 1077–1095 (1993)CrossRefGoogle Scholar
  5. Delafargue, A., Ulm, F.J.: Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int. J. Solids Struct. 41(26), 7351–7360 (2004), doi:10.1016/j.ijsolstr.2004.06.019MATHCrossRefGoogle Scholar
  6. Elliott, H.A.: Axial symmetric stress distribution in aeolotropic hexagonal crystals-the problem of the plane and related problems. Proc. Camb. Phil. Soc. 45(4), 10 (1949)CrossRefGoogle Scholar
  7. Hanson, M.T.: The Elastic Field for Conical Indentation Including Sliding Friction for Transverse Isotropy. J. Appl. Mech. 59(2), 123–S130 (1992)CrossRefGoogle Scholar
  8. Mares, V., Kronenberg, A.: Experimental deformation of muscovite. J. Struct. Geol. 15(9), 1061–1075 (1993)CrossRefGoogle Scholar
  9. McNeil, L.E., Grimsditch, M.: Elastic moduli of muscovite mica. J. Phys. Condens Matter 5(11), 1681 (1993)CrossRefGoogle Scholar
  10. Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater Res. 19(1), 3–20 (2004), doi:10.1557/jmr.2004.19.1.3CrossRefGoogle Scholar
  11. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 10 (1965)MathSciNetCrossRefGoogle Scholar
  12. Swadener, J.G., Pharr, G.M.: Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos. Mag. A 81(2), 447–466 (2001), doi:10.1080/01418610108214314CrossRefGoogle Scholar
  13. Ulm, F.-J., Abousleiman, Y.: The nanogranular nature of shale. Act. Geo. 1(2), 77–88 (2006), doi:10.1007/s11440-006-0009-5CrossRefGoogle Scholar
  14. Vaughan, M.T., Guggenheim, S.: Elasticity of Muscovite and Its Relationship to Crystal Structure. J. Geophys. Res. 91(B5), 4657–4664 (1986), doi:10.1029/JB091iB05p04657CrossRefGoogle Scholar
  15. Vlassak, J.: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67(5), 1045–1056 (1993)CrossRefGoogle Scholar
  16. Vlassak, J.J., Ciavarella, M., Barber, J.R., Wang, X.: The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 51(9), 1701–1721 (2003), doi:10.1016/s0022-5096(03)00066-8MATHCrossRefGoogle Scholar
  17. Wang, Z., Bei, H., George, E.P., Pharr, G.M.: Influences of surface preparation on nanoindentation pop-in in single-crystal Mo. Scripta Mater 65(6), 469–472 (2011), doi:10.1016/j.scriptamat.2011.05.030CrossRefGoogle Scholar
  18. Zhang, G., Wei, Z., Ferrell, R.E.: Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation. Appl. Clay. Sci. 43(2), 271–281 (2009), doi:10.1016/j.clay.2008.08.010CrossRefGoogle Scholar
  19. Zhang, G., Wei, Z., Ferrell, R.E., Guggenheim, S., Cygan, R.T., Luo, J.: Evaluation of the elasticity normal to the basal plane of non-expandable 2:1 phyllosilicate minerals by nanoindentation. Am. Mineral 95(5-6), 863–869 (2010), doi:10.2138/am.2010.3398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rohit Pant
    • 1
  • Liming Hu
    • 2
  • Guoping Zhang
    • 1
  1. 1.Department of Civil & Environmental EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.State Key Laboratory of Hydro-Science & Engineering, Department of Hydraulic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations