Pore Size Distribution and Soil Water Suction Curve from Micro-tomography Measurements and Real 3-D Digital Microstructure of a Compacted Granular Media by Using Direct Numerical Simulation Technique

  • Felix H. Kim
  • Dayakar Penumadu
  • Volker P. Schulz
  • Andreas Wiegmann
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

Predictive measurement of capillary pressure – saturation relationship of a porous media is obtained based on the actual microstructure obtained from high resolution tomography data. X-ray micro-tomography provided a high contrast for silica phase, and actual geometry of sand particles and void distribution. The morphological opening (erosion + dilation) is used to get a pore size distribution using the concept of granulometry. Full-morphology approach is used to model the quasi-static wetting and non-wetting phase distribution of a primary drainage process. Predicted soil water suction curves for a compacted silica sand sample is presented along with the effects of assumed contact angle between water and silica surface.

Keywords

Porous Medium Contact Angle Pore Size Distribution Capillary Pressure Discrete Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 529–546 (1996)CrossRefGoogle Scholar
  2. Alshibli, K.A., Sture, S., Costes, N.C., Frank, M.L., Lankton, M.R., Batiste, S.N., Swanson, R.A.: Assessment of Localized Deformations in Sand Using X-Ray Computed Tomography. Geotecnical Testing Journal 23(3), 274–299 (2000)CrossRefGoogle Scholar
  3. Al-Raoush, R.I., Willson, C.S.: A pore-scale investigation of a multiphase porous media system. Journal of Contaminant Hydrology 77(1-2), 67–89 (2005)CrossRefGoogle Scholar
  4. Schnaar, G., Brusseau, M.L.: Pore-Scale Characterization of Organic Immiscible-Liquid Morphology in Natural Porous Media Using Synchrotron X-ray Microtomography. Environmental Science & Technology 39(21), 8403–8410 (2005)CrossRefGoogle Scholar
  5. de Beer, F.C., Middleton, M.F.: Neutron Radiography Imaging, Porosity and Permeability in Porous Rocks. South African Journal of Geology 109(4), 541–550 (2006)CrossRefGoogle Scholar
  6. Hassanein, R., Meyer, H.O., Carminati, A., Estermann, M., Lehmann, E., Vontobel, P.: Investigation of Water Imbibition in Porous Stone by Thermal Neutron Radiography. Journal of Physics D: Applied Physics 39(19), 4284–4291 (2006)CrossRefGoogle Scholar
  7. Kim, F., Penumadu, D., Hussey, D.S.: Water Distribution Variation in Partially Saturated Granular Materials Using Neutron Imaging. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers (ASCE) 138(2), 147–154 (2012)CrossRefGoogle Scholar
  8. Kim, F.H., Penumadu, D., Gregor, J., Kardjilov, N., Manke, I.: High resolution neutron and X-ray imaging of granular materials, Under Review. Journal of Geotechnical and Geoenvironmental Engineering (2012)Google Scholar
  9. Iwashita, K., Oda, M.: Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM. Journal of Engineering Mechanics 124(3), 285–292 (1998)CrossRefGoogle Scholar
  10. Yimsiri, S., Soga, K.: DEM analysis of soil fabric effects on behaviour of sand. Geotechnique 60(6), 483–495 (2010)CrossRefGoogle Scholar
  11. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  12. Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron Computed Microtomography of Porous Media: Topology and Transports. Physical Review Letters 73(14), 2001–2004 (1994)CrossRefGoogle Scholar
  13. Schulz, V.P., Becker, J., Wiegmann, A., Mukherjee, P.P., Wang, C.-Y.: Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach. Journal of The Electrochemical Society 154(4), B419–B426 (2007)CrossRefGoogle Scholar
  14. Hazlett, R.D.: Simulation of capillary-dominated displacements in microtomographic images of reservoir rocks. Transport in Porous Media 20(1), 21–35 (1995)CrossRefGoogle Scholar
  15. Ferréol, B., Rothman, D.H.: Lattice-Boltzmann simulations of flow through Fontainebleau sandstone. Transport in Porous Media 20(1), 3–20 (1995)CrossRefGoogle Scholar
  16. Becker, J., Schulz, V., Wiegmann, A.: Numerical Determination of Two-Phase Material Parameters of a Gas Diffusion Layer Using Tomography Images. Journal of Fuel Cell Science and Technology 5(2), 21006–21009 (2008)CrossRefGoogle Scholar
  17. Vogel, H.-J., Tölke, J., Schulz, V.P., Krafczyk, M., Roth, K.: Comparison of a Lattice-Boltzmann Model, a Full-Morphology Model, and a Pore Network Model for Determining Capillary Pressure–Saturation Relationships. Vadose Zone J. 4(2), 380–388 (2005)CrossRefGoogle Scholar
  18. Hilpert, M., Miller, C.T.: Pore-morphology-based simulation of drainage in totally wetting porous media. Advances in Water Resources 24(3-4), 243–255 (2001)CrossRefGoogle Scholar
  19. Ishakoglu, A., Baytas, A.F.: The influence of contact angle on capillary pressure-saturation relations in a porous medium including various liquids. International Journal of Engineering Science 43(8-9), 744–755 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Felix H. Kim
    • 1
  • Dayakar Penumadu
    • 1
  • Volker P. Schulz
    • 2
  • Andreas Wiegmann
    • 3
  1. 1.Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Baden-Wuerttemberg Cooperative State UniversityMannheimGermany
  3. 3.Fraunhofer ITWMKaiserslauternGermany

Personalised recommendations