Advertisement

A Framework for the Numerical Simulation of Early Stage Aneurysm Development with the Lattice Boltzmann Method

  • J. Bernsdorf
  • J. Qi
  • H. Klimach
  • S. Roller
Conference paper

Abstract

In this paper, we describe a new approach towards numerical simulation of flow induced early stage development of cerebral aneurysm. The wall shear stress gradient, computed by a CFD simulation inside a bifurcating flow channel, triggers a physiological process leading to the remodelling, and in the worst case, degeneration of the vessel walls. The lattice Boltzmann method, extended by a generic vessel wall model to allow an efficient modification of the flow geometry during run-time, is employed for simulating the modification of the vessel wall, which is considered as initial step for aneurysm formation. First results presented here show a thinning of the vessel wall at locations left and right of the apex of the bifurcation, in good agreement with experimental studies.

Keywords

Wall Shear Stress Lattice Boltzmann Method Cerebral Aneurysm Lattice Boltzmann High Wall Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    see e.g., the aneurIST IST project: http://www.aneurist.org
  2. 2.
    see e.g., the Thrombus ICT project: http://www.thrombus-vph.eu
  3. 3.
    J. Bernsdorf, D. Wang and G. Berti. Two Complementary Approaches for Integrating a Lattice Boltzmann Flow Solver into Simulation Frameworks. Proceedings of the International Conference on Computational Science, ICCS 2011. Procedia Computer Science Volume 4 (2011): 1014–1020Google Scholar
  4. 4.
    E. Metaxa, M. Tremmel, S.K. Natarajan, J. Xiang, R.A. Paluch, M. Mandelbaum, A.H. Siddiqui, J. Kolega, J.M. and H. Meng. Characterization of Critical Hemodynamics Contributing to Aneurysmal Remodeling at the Basilar Terminus in a Rabbit Model. Stroke 41 (2010): 1774–1782Google Scholar
  5. 5.
    Z. Wang, J. Kolega, Y. Hoi, L. Gao, D. Swartz, E.I. Levy, J. Mocco and H. Meng. Molecular Alterations Associated with Aneurysmal Remodeling are Localized in the High Hemodynamic Stress Region of a Created Carotid Bifurcation. Neurosurgery 65(1) (2009): 169–178Google Scholar
  6. 6.
    M.P. Szymanski, E. Metaxa, H. Meng, J. Kolega. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Annals of biomedical engineering 36(10) (2008): 1681–1689Google Scholar
  7. 7.
    H. Meng, D. D. Swartz, Z. Wang, Y. Hoi, J. Kolega, E. M. Metaxa, M. P. Szymanski, J. Yamamoto, E. Sauvageau, and E. I. Levy. A Model System for Mapping Vascular Responses to Complex Hemodynamics at Arterial Bifurcations In Vivo. Neurosurgery 59(5) (2006):1094–1101Google Scholar
  8. 8.
    D. Krex, H. K. Schackert and G. Schackert. Genesis of Cerebral Aneurysms - An Update. Acta Neurochir (Wien) 143(5) (2001): 429–448Google Scholar
  9. 9.
    A. Caiazzo, D. Evans, J.-L. Falcone, J. Hegewald, E. Lorenz, B. Stahl, D.Wang, J.Bernsdorf, B. Chopard, J. Gunn, R. Hose, M. Krafczyk, P. Lawford, R. Smallwood, D. Walker, A. Hoekstra. A Complex Automata approach for in-stent restenosis: Two-dimensional multiscale modelling and simulations. Journal of Computational Science, Volume 2, Issue 1(2011): 9–17Google Scholar
  10. 10.
    J. Bernsdorf and D. Wang. Non-Newtonian blood flow simulation in cerebral aneurysms. Computers & Mathematics with Applications, Volume 58, Issue 5 (2009): 1024–1029Google Scholar
  11. 11.
    S.E. Harrison, S.M. Smith, J. Bernsdorf, D.R. Hose, P.V. Lawford. Application and validation of the lattice Boltzmann method for modelling flow-related clotting. Journal of Biomechanics, Volume 40, Issue 13 (2007): 3023–3028Google Scholar
  12. 12.
    S. Roller, J. Bernsdorf, H. Klimach, M. Hasert, D. Harlacher, M. Cakircali, S. Zimny, K. Masilamani, L. Didinger, J. Zudro. An Adaptable Simulation Framework Based on a Linearized Octree. In: M. Resch et al. (eds.) High Performance Computing on Vector Systems 2011, springer (2012): 93–105Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Bernsdorf
    • 1
    • 2
  • J. Qi
    • 1
    • 2
  • H. Klimach
    • 1
    • 2
  • S. Roller
    • 1
    • 2
  1. 1.German Research School for Simulation Sciences GmbHAachenGermany
  2. 2.RWTH Aachen UniversityAachenGermany

Personalised recommendations