Modeling and Simulation

  • C. Brecher
  • A. Bouabid
  • M. Deichmueller
  • B. Denkena
  • K. Großmann
  • A. Hardtmann
  • D. Hömberg
  • R. Hermes
  • F. Klocke
  • M. Löser
  • O. Rott
  • P. Steinmann
  • M. Weiß
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

One focus of the Priority Program 1180 is the prediction of process machine interactions. The investigated manufacturing processes as well as the machine tool behavior and the physical phenomena vary within the projects of this program. So depending on the issues that were investigated, the modeling approach that is best suitable for the specific problem has to be applied. To predict the interactions these models have to be coupled and simulated. Besides the modeling approaches different simulation techniques have also been applied. This chapter gives an overview of the applied models of the structural machine behavior and the manufacturing processes, the coupling of these models as well as the simulation techniques that were used.

Keywords

Machine Tool Chip Thickness Chip Formation Frequency Response Function Ordinary Differential Equa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brecher, C., Esser, M., Witt, S.: Interaction of manufacturing process and machine tool. CIRP Annals – Manufacturing Technology 58, 588–607 (2009)CrossRefGoogle Scholar
  2. 2.
    Klocke, F., Brecher, C., Sitte, B., Weiß, M.: Analyse der dynamischen Wechselwirkungen bei Pendel- und Schnellhubschleifprozessen. In: Jahrbuch Schleifen, Honen, Läppen und Polieren, vol. 64, Ausgabe, Essen (2010)Google Scholar
  3. 3.
    Hoffmann, F.: Optimierung der dynamischen Bahngenauigkeit von Werkzeugmaschinen mit der Mehrkörpersimulation. Dissertation, WZL of RWTH Aachen University (2008)Google Scholar
  4. 4.
    Oden, J.T., Lin, T.L.: On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Computer Methods in Applied Mechanics and Engineering 57, 297–367 (1986)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Tlusty, J.: Analysis of the State of Research in Cutting Dynamics. Annals of the CIRP 27(2), 583–589 (1978)Google Scholar
  6. 6.
    Radharamanan, R.: The Measurement of the Dynamic Cutting Coefficients and the Analysis of Chatter Behaviour in Turning. Katholieke Universiteit Leuven, Dissertation (1977)Google Scholar
  7. 7.
    Altintas, Y., Weck, M.: Chatter Stability of Metal Cutting and Grinding. In: Annals of the CIRP, vol. 53(2), pp. 619–642 (2004)Google Scholar
  8. 8.
    Stephenson, D.A., Agapiou, J.S.: Metal Cutting. Theory and Practice. Marcel Dekker Inc., New York (1996)Google Scholar
  9. 9.
    Merchant, M.E.: Mechanics of the metal cutting process. Journal of Applied Physics 16, 318–325 (1945)CrossRefGoogle Scholar
  10. 10.
    Fang, N., Jaeahir, I.S.: Analytical Predictions and Experimental Validation of Cutting Forces Ratio, Chip Thickness, and Chip Back-Flow Angle in Restricted Contact Machining Using the Universal Slip-Line Model. International Journal of Machine Tools and Manufacture 42, 681–694 (2000)CrossRefGoogle Scholar
  11. 11.
    Clausen, M.: Zerspankraftprognose und -simulation für Dreh- und Fräsprozesse. Hannover. Diss (2005)Google Scholar
  12. 12.
    Tlusty, J., Ismail, F.: Basic Non-Linearity in Machining Chatter. Annals of the CIRP 30(1), 299–304 (1981)CrossRefGoogle Scholar
  13. 13.
    Altintas, Y.: Modeling Approaches and Software for Predicting the Performance of Milling Operations at MAL-UBC. Machining Science and Technology 4(4), 445–478 (2000)CrossRefGoogle Scholar
  14. 14.
    Weck, M., Brecher, C.: Werkzeugmaschinen. Automatisierung von Maschinen und Anlagen; 6. Auflage. Springer (2006)Google Scholar
  15. 15.
    Stépán, G., Insperger, T.: Stability of the Milling Process. Periodica Polytechnica Ser. Mech. Eng. 44 (2000)Google Scholar
  16. 16.
    Feng, H.-Y., Azeem, A., Wang, L.: Simplified and Efficient Calibration of a Mechanistic Cutting Force Model for Ball-End Milling. International Journal of Machine Tools and Manufacture 44, 214–268 (2004)Google Scholar
  17. 17.
    Witt, S.: Integrierte Simulation von Maschine, Werkstück und spanendem Fertigungsprozess. Dissertation. Aachen. RWTH Aachen, Werkzeugmaschinenlabor RWTH Aachen (2007)Google Scholar
  18. 18.
    Marsolek, J., Fleischer, J., Schmidt, C., Schermann, T.: Simulation von Zerspanungsprozessen mit Abaqus. Tagungsband ABAQUS Benutzerkonferenz, Nürnberg (2005)Google Scholar
  19. 19.
    Kim, J.S., Lee, B.H.: An Analytical Model of Dynamic Cutting Forces in Chatter Vibration. International Journal of Machine Tools and Manufacture 31(3), 371–381 (1991)CrossRefGoogle Scholar
  20. 20.
    van Brussel, H.: Dynamische Analyse van het Verspaningsproces. Katholieke Universiteit Leuven, Dissertation (1971)Google Scholar
  21. 21.
    Werntze, G.: Dynamische Schnittkraftkoeffizienten. Bestimmung mit Hilfe des Digitalrechners und Berücksichtigung im mathematischen Modell zur Stabilitätsanalyse. RWTH Aachen, Dissertation (1973)Google Scholar
  22. 22.
    Brinksmeier, E., Aurich, J.C., Govekar, E., Heinzel, C., Hoffmeister, H.W., Peters, J., Rentsch, R., Stephenson, D.J., Uhlmann, E., Weinert, K., Wittmann, M.: Advances in Modeling and Simulation of Grinding Processes. Annals of the CIRP 55(2), 667–696 (2006)CrossRefGoogle Scholar
  23. 23.
    Tönshoff, H.K., Peters, J., Inasaki, T., Paul, T.: Modelling and Simulation of Grinding Processes. Annals of the CIRP 41(2), 677–688 (1992)CrossRefGoogle Scholar
  24. 24.
    Aurich, J.C., Biermann, D., Blum, H., Brecher, C., Carstensen, C., Denkena, B., Klocke, F., Kröger, M., Steinmann, P., Weinert, K.: Modelling and simulation of process: machine interaction in grinding. Production Engineering 3(1), 111–120Google Scholar
  25. 25.
    Mackerle, J.: Finite Element Analysis and Simulation of Machining: an Addendum. A Bibliography (1996-2002). International Journal of Machine Tools & Manufacture 43, 103–114 (2003)CrossRefGoogle Scholar
  26. 26.
    Hou, Z.B., Komanduri, R.: On the Mechanics of the Grinding Process-Part 1. Stochastic Nature of the Grinding Process. International Journal of Machine Tools & Manufacture 43, 1579–1593 (2003)CrossRefGoogle Scholar
  27. 27.
    Zitt, U.-R.: Modellierung und Simulation von Hochleistungsschleifprozessen. University of Kaiserslautern, Dissertation (1999)Google Scholar
  28. 28.
    Chang, H.-C., Junz Wang, J.-J.: A stochastic grinding force model considering random grit distribution. International Journal of Machine Tools and Manufacture 48, 1335–1344 (2008)CrossRefGoogle Scholar
  29. 29.
    Doman, D.A., Warkentin, A., Bauer, R.: Finite element modeling approaches in grinding. International Journal of Machine Tools and Manufacture 49(2), 109–116Google Scholar
  30. 30.
    Werner, K., Klocke, F., Brinksmeier, E.: Modelling and Simulation of Grinding Processes. In: 1st European Conference on Grinding. Aachen, pp. S.8-1 – S.8-27 (2003)Google Scholar
  31. 31.
    Denkena, B., Deichmueller, M., Kröger, M., Popp, K.M., Carstensen, C., Schroeder, A., Wiedemann, S.: Geometrical Analysis of the Complex Contact Area for Modeling the local Distribution of Process Forces in Tool Grinding. In: Proceedings of the 1st International Conference on Process Machine Interaction, pp. 289–298 (2008)Google Scholar
  32. 32.
    Voelkner, W.: Spannungs- Kraft- und Arbeitermittlung beim Umformen. Fertigungstechnik und Betrieb 25(12), 739–743 (1975)Google Scholar
  33. 33.
    Voelkner, W.: Ein Beitrag zur Streifen- und Gleitlinienmethode. Wissenschaftliche Zeitschrift der TU Dresden 25(3), 613–618 (1976)Google Scholar
  34. 34.
    Lange, K. (ed.): Handbook of Metal Forming. Society of Manufacturing Engineers, Dearborn, MI (1994)Google Scholar
  35. 35.
    Petzold, W., König, J., Eberlein, L. (eds.): Umform- und Zerteiltechnik. Lehrbrief Tiefziehen und Drücken, Dresden (1981)Google Scholar
  36. 36.
    Neugebauer, R. (ed.): Umform- und Zerteiltechnik. Verlag Wissenschaftliche Skripten, Chemnitz (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Brecher
    • 1
  • A. Bouabid
    • 2
  • M. Deichmueller
    • 3
  • B. Denkena
    • 3
  • K. Großmann
    • 4
  • A. Hardtmann
    • 4
  • D. Hömberg
    • 5
  • R. Hermes
    • 1
  • F. Klocke
    • 1
  • M. Löser
    • 4
  • O. Rott
    • 5
  • P. Steinmann
    • 2
  • M. Weiß
    • 1
  1. 1.Laboratory of Machine Tools and Production Engineering, Chair of Machine ToolsRWTH Aachen UniversityAachenGermany
  2. 2.Chair of Applied MechanicsUniversität Erlangen-NüurnbergBavariaGermany
  3. 3.Institute of Production Engineering and Machine ToolsLeibniz Universität HannoverHannoverGermany
  4. 4.Institute of Machine Tools and Control EngineeringTechnische Universität DresdenDresdenGermany
  5. 5.Weierstrass InstituteBerlinGermany

Personalised recommendations