A Plausible Texture Enlargement and Editing Compound Markovian Model

  • Michal Haindl
  • Vojtěch Havlíček
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7252)


This paper describes high visual quality compound Markov random field texture model capable to realistically model multispectral bidirectional texture function, which is currently the most advanced representation of visual properties of surface materials. The presented compound Markov random field model combines a non-parametric control random field with analytically solvable wide-sense Markov representation for single regions and thus allows very efficient non-iterative parameters estimation as well as the compound random field synthesis. The compound Markov random field model is utilized for realistic texture compression, enlargement, and powerful automatic texture editing. Edited textures maintain their original layout but adopt anticipated local characteristics from one or several parent target textures.


compound Markov random field bidirectional texture function texture editing BTF texture enlargement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashikhmin, M.: Synthesizing natural textures. Tech. rep. (2001)Google Scholar
  2. 2.
    Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Texture mixing and texture movie synthesis using statistical learning. IEEE Transactions on Visualization and Computer Graphics 7(2), 120–135 (2001)CrossRefGoogle Scholar
  3. 3.
    Brooks, S., Cardle, M., Dodgson, N.A.: Enhanced texture editing using self similarity. In: VVG, pp. 231–238 (2003)Google Scholar
  4. 4.
    Brooks, S., Dodgson, N.A.: Self-similarity based texture editing. ACM Trans. Graph. 21(3), 653–656 (2002)CrossRefGoogle Scholar
  5. 5.
    Brooks, S., Dodgson, N.A.: Integrating procedural textures with replicated image editing. In: Spencer, S.N. (ed.) Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia 2005, Dunedin, New Zealand, November 29-December 2, pp. 277–280. ACM (2005)Google Scholar
  6. 6.
    Filip, J., Haindl, M.: Bidirectional texture function modeling: A state of the art survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11), 1921–1940 (2009)CrossRefGoogle Scholar
  7. 7.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions and bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Int. 6(11), 721–741 (1984)zbMATHCrossRefGoogle Scholar
  8. 8.
    Haindl, M.: Texture synthesis. CWI Quarterly 4(4), 305–331 (1991)zbMATHGoogle Scholar
  9. 9.
    Haindl, M., Hatka, M.: BTF Roller. In: Chantler, M., Drbohlav, O. (eds.) Proceedings of the 4th International Workshop on Texture Analysis, Texture 2005, pp. 89–94. IEEE, Los Alamitos (2005)Google Scholar
  10. 10.
    Haindl, M., Hatka, M.: A roller - fast sampling-based texture synthesis algorithm. In: Skala, V. (ed.) Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 93–96. UNION Agency - Science Press, Plzen (2005)Google Scholar
  11. 11.
    Haindl, M., Havlíček, V.: A multiscale colour texture model. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, pp. 255–258. IEEE Computer Society, Los Alamitos (2002), Google Scholar
  12. 12.
    Haindl, M., Havlíček, V.: A compound mrf texture model. In: Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, pp. 1792–1795. IEEE Computer Society CPS, Los Alamitos (2010), CrossRefGoogle Scholar
  13. 13.
    Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co., Singapore (1992)Google Scholar
  14. 14.
    Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture function. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1859–1865 (2007)CrossRefGoogle Scholar
  15. 15.
    Haindl, M., Havlícek, V.: A Multiresolution Causal Colour Texture Model. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 114–122. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Haindl, M., Havlíček, V.: Texture Editing Using Frequency Swap Strategy. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1146–1153. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. ACM Trans. Graph., 327–340 (2001)Google Scholar
  18. 18.
    Jeng, F.C., Woods, J.W.: Compound gauss-markov random fields for image estimation. IEEE Transactions on Signal Processing 39(3), 683–697 (1991)CrossRefGoogle Scholar
  19. 19.
    Khan, E.A., Reinhard, E., Fleming, R.W., Bülthoff, H.H.: Image-based material editing. ACM Trans. Graph. 25(3), 654–663 (2006), CrossRefGoogle Scholar
  20. 20.
    Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics (TOG) 20(3), 127–150 (2001)CrossRefGoogle Scholar
  21. 21.
    Molina, R., Mateos, J., Katsaggelos, A., Vega, M.: Bayesian multichannel image restoration using compound gauss-markov random fields. IEEE Trans. Image Proc. 12(12), 1642–1654 (2003)CrossRefGoogle Scholar
  22. 22.
    Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis and rendering of bidirectional texture functions. In: Eurographics 2004. STAR - State of The Art Report, pp. 69–94. Eurographics Association (2004)Google Scholar
  23. 23.
    Potts, R., Domb, C.: Some generalized order-disorder transformations. In: Proceedings of the Cambridge Philosophical Society, vol. 48, p. 106 (1952)Google Scholar
  24. 24.
    Wang, X., Wang, L., Liu, L., Hu, S., Guo, B.: Interactive modeling of tree bark. In: Proc. 11th Pacific Conf. on Computer Graphics and Applications, pp. 83–90. IEEE (2003)Google Scholar
  25. 25.
    Wiens, A.L., Ross, B.J.: Gentropy: evolving 2d textures. Computers & Graphics 26, 75–88 (2002)CrossRefGoogle Scholar
  26. 26.
    Wu, F.: The Potts model. Reviews of modern physics 54(1), 235–268 (1982)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wu, J., Chung, A.C.S.: A segmentation model using compound markov random fields based on a boundary model. IEEE Trans. Image Processing 16(1), 241–252 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michal Haindl
    • 1
  • Vojtěch Havlíček
    • 1
  1. 1.Institute of Information Theory and Automation, of the ASCRPragueCzech Republic

Personalised recommendations